MIME-Version: 1.0 Content-Type: multipart/related; boundary="----=_NextPart_01DC5365.5C75D260" Este documento é uma Página da Web de Arquivo Único, também conhecido como Arquivo Web. Se você estiver lendo essa mensagem, o seu navegador ou editor não oferece suporte ao Arquivo Web. Baixe um navegador que ofereça suporte ao Arquivo Web. ------=_NextPart_01DC5365.5C75D260 Content-Location: file:///C:/32CB10EF/file8943.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="us-ascii"

 

CADEIA DE CUSTÓDIA DA PROVA DIGITAL NO BRASIL: O QUE SE PRECISA, O QUE SE TEM E POR QUE PENSAR EM BLOCKCHAIN?

Chain of custo= dy of digital evidence in Brazil: what is needed, what is available, and why consider Blockchain?

 

Catiane Steffen= *  

 

Resumo: Neste artigo, discorre-= se sobre como a forma atual de concretização da cadeia de custó= dia no país contribui para que os dados digitais fiquem mais vulneráveis à desconsideração como elemento de prova no processo judicial, em decorrência de situações como falhas operacionais, lacunas procedimentais e o modo tradicional de estabelecimento da cronologia de acesso e manipulação da prov= a. Os algoritmos de geração de hash por si só não garantem a integridade da prova digital de modo pleno, pois não têm condições de afirmar nada so= bre os dados digitais quanto ao que aconteceu com eles antes da efetiva aplica&= ccedil;ão da função sobre os dados de entrada. A fim de promover elemen= tos como uma maior transparência na gestão da prova digital, o estabelecimento de um histórico cronológico de acesso à prova preciso e confiável, assim como auditoria e accountability, além da desmaterialização = da cadeia de custódia, apresenta-se a possibilidade de exploração das propriedades da tecnologia Blockchain na conformação de uma cadeia de custódia da prova digital confiável e condizente com as necessidades demandadas no processo penal brasileiro.

 

Palavras-chave: Blockchain; cadeia de custódia; hash; processo penal; prova digital.

 

Abstract: This article examines how the current way of implementing the chain of custody in the country contributes to making digital data more vulnerable to being disrega= rded as evidence in legal proceedings, due to situations such as operational failures, procedural gaps, and the traditional method of establishing the timeline of access to, and manipulation of, evidence. Hash generation algorithms alone do not fully guarantee the integrity of digital evidence, as they lack the ability to affirm anything about the digital data regarding what happened to them before the actual application of the function on the input data. The possibility of exploring= the properties of Blockchain technology is presented here to shape a reliable c= hain of custody of digital evidence which is compatible with the demands of the Brazilian criminal process. This is done in order to promote elements such = as greater transparency in the management of digital evidence, the establishme= nt of an accurate and reliable chronological history of access to evidence, as well as audit and accountability, in addition to the dematerialization of t= he chain of custody.<= span lang=3DEN-US style=3D'mso-bidi-font-size:12.0pt;mso-fareast-font-family:"Ti= mes New Roman"; mso-bidi-font-family:"Times New Roman";mso-ansi-language:EN-US'>=

Keywords<= /span>: Blockchain; chain of custody; h= ash; criminal procedure; digital evidence.

 

 

 

INTRODUÇÃO

 

No presente artigo, discorre-se sobre a cadeia de custó= dia da prova digital no Brasil e se problematizam algumas questões relat= ivas ao assunto, a partir da compreensão de que a prova digital se trata = de uma nova modalidade de prova. De for= ma introdutória e breve, apresenta-se o contexto de surgimento, assim c= omo alguns conceitos e noções principais da tecnologia Blockchain, explorando-se, na sequência, como as características e propriedades dela podem contribuir para a efetivação de necessidades demandadas na cadeia de custódia do processo penal brasileiro com foco na prova digital.

Quando se trata de dados digitais, a natureza desses dados por= si só já demanda tratamento diferenciado daquele que é da= do aos vestígios, evidências e provas físicas, apresentando características específicas que não são captura= das pelos modelos tradicionais de preservação de conteúdo = de outras naturezas. Essas características tornam os dados digitais mais facilmente adulteráveis. No entanto, os rastros dessas manipulações são mais difíceis de se constatar = e, consequentemente, é mais difícil responsabilizar quem lhes deu causa, caso seja cabível.

Os algoritmos de geração de hash cada vez mais são aplicados sobre os dados digitais na tentativa de se garant= ir a confiabilidade na integridade desse tipo de conteúdo. Frequentemente= , a ausência do valor hash torna-se motivo p= ara a desconsideração dos dados digitais como prova no processo pen= al.

No entanto, até mesmo quando se fala em hash, há situaç&otil= de;es a se considerar. Nem todo algoritmo gerador de valor hash tem condições de apoiar o objetivo a que se destina em um determinado cenário de aplicação. Alguns= dos algoritmos de hash existentes não suportam a verificação de integridade dos dados digitais na perícia forense, enquanto outros, que são considerados válidos para tanto, podem não ser adequados para outras atividades forenses.

Há de se considerar também que o que aconteceu c= om os dados antes de o valor hash = ser gerado não é capturado pelo algoritmo, que somente pode compr= ovar a integridade dos dados digitais a partir do que recebeu de entrada em um c= erto instante de tempo, o da efetiva aplicação. Nesse contexto, a cadeia de custódia da prova digital torna-se de fundamental importância.

Por isso é preciso ampliar o olhar para que se verifiqu= e se o modo como se trabalha hoje a cadeia de custódia sobre os dados digitais no Brasil não contribui para que falhas operacionais, lacun= as procedimentais e modelos de construção de cronologia/historic= idade tradicionais do acesso e manipulação dos dados aumentem o ris= co do comprometimento da validade de dados digitais como prova no processo pen= al. Assim, realizadas essas considerações iniciais, aprese= nta-se a Blockchain a partir de um nível mais alto de leitura.

No tocante à tecnologia, há mais detalhes e aprofundamentos que poderiam ser explorados. No entanto, devido ao escopo do trabalho, uma análise mais completa está para além dele, mas poderá estar presente em trabalhos futuros. Em seguida, discorre-se brevemente sobre como algumas das propriedades da tecnologia Blockchain<= /i>, do modelo original às variações dela, vão ao encontro das necessidades da cadeia de custódia da prova digital no processo penal brasileiro, e, na sequência, apresentam-se as considerações finais.

 

1 BLOCKCHAIN

 

A tecnologia conhecida como Blockchain come&cc= edil;ou a ser propagada no ano de 2008, quando apareceu em artigo (Nakamoto, 2008) disponibilizado na internet. A ideia central consistia em um modelo capaz de sustentar e viabilizar as transações sobre uma moeda digital,= o Bitcoin (BTC). Pouco tempo depois, a tecnologia Blockchain tornou-se não somente a base das criptomoedas como também foi aprimorada nas características dela. Assim, encontrou aplicação em diversos setores, suportando os smart contracts (que são pedaços de código que, ao verificarem que certas condições são atendidas, automaticamente executam ações predefinidas).

As noções técnicas por detrás da Blockchain envolvem múltiplos conceitos, e um deles é o da função hash, que, aplicada sobre uma entr= ada (dados digitais) de tamanho variável, produz uma saída (representação condensada dos dados de entrada) de tamanho fi= xo. Dentro da perícia forense, algoritmos de geração de hash já são utilizad= os em cenários como os que envolvem a verificação da integri= dade de dados digitais, que é um dos requisitos que devem ser garantidos dentro da cadeia de custódia no Brasil para que os dados digitais te= nham validade como prova no processo penal.

Nesta seção, não se pretende esg= otar a análise técnica do conteúdo apresentado (o que nem mes= mo seria possível pela extensão do que possibilita, do que promo= ve e do estágio de aprimoramento da Blockchain, que se abre em diversas direções), e, sim, apresentar essa tecnologia em um panorama breve e geral que permita compreendê-la desde a ideia inicia= l, assim como as possíveis variações, discorrendo sobre a possibilidade de exploração das propriedades dela na cadeia de custódia da prova digital no Brasil. Assim, a seguir, apresenta-se u= ma visão geral da tecnologia Blockchain.

 

1.1  Conceitos e definiçõe= s

 

Ao estudar o estado da arte, verifica-se que a tecnologia Blockchain avanç= ou muito desde a concepção original. As possibilidades de utilização, exploração e adaptação dessa tecnologia para vários cenários a torna versátil= e lhe confere robustez para ser aplicada no apoio de diversas atividades. Considerando-se que Blockchain pode ser implementada utilizando-se alguns dos melhores e mais seguros algoritmos, capazes de apoiar a aplicabilidade dela para muito além da ideia inicial, e em conjunto = com outras estruturas, verifica-se que a tecnologia Blockchain já materializa parte do potencial de evolução dela, com aplicação em diversos cenários.

A Blockc= hain é apresentada na literatura em trabalhos que envolvem diferentes contextos. Uma rápida revisão em alguns desses materiais perm= ite visualizar e extrair conceitos e definições que se complement= am. Em Alharby e Van Moorsel (2017), os autores descrevem a tecnologia Block= chain sob a visão de uma base de dados replicada e distribuída entr= e os participantes da rede que registra todas as transações que aconteceram nela. A base de dados é descrita como sendo formada por = uma composição de blocos, encadeada de maneira ordenada, de modo = que cada bloco tem um valor hash que o identifica. Além disso, cada bloco aponta para o bloco imediatamente anterior e armazena um conjunto de transações. = Uma vez que um bloco é criado e anexado à cadeia de blocos, as transações do bloco não podem ser alteradas ou reverti= das, o que contribui para garantir a integridade das transações.

A tecnologia Blockchain é colocada por alguns pesquisadores com= o um novo paradigma, sendo destacada a utilização de um mecanismo = de consenso distribuído, o armazenamento das informações = das transações efetuadas em uma rede ponto a ponto em uma cadeia = de blocos e a possibilidade de uso da Blockchain para muito além= do suporte ao Bitcoin e a qualquer outra criptomoeda. A aplicação estendida da tecnologia Blockchain para outros cenários &eacu= te; apresentada na literatura em trabalhos na medicina (Roman-Belmonte, De La Corte-Rodriguez e Rodriguez-Merchan, 2018), na internet das coisas (IoT) (Kshetri, 2017), no e-government (Lykidis, Drosatos e Rantos, 2021) e no plea bargaining (Sinaga; <= span class=3DSpellE>Bolifaar, 2020).

No artigo de Sinaga e Bolifaar (2020), os autores discorrem sobre a possibilidade de uso dessa tecnologia para atender &agrav= e;s necessidades judiciais locais da Indonésia, apresentando um modelo conceitual no qual a utilização da Blockchain apoiaria= a propositura do plea bargaining em crimes corporativos naquele país. Eles destacam a descentralização no controle sob= re os dados e a imutabilidade ao trazerem no texto consideraç&otild= e;es sobre a tecnologia Blockchain se comportar como um ledger[1] distribuído, que permite o armazenamento dos registros das transações que aconteceram em uma rede ponto a ponto, possibilitando que os nós participantes verifiquem as alterações de estado e suportem conjuntamente a consistência da cadeia de blocos, que deixa de estar sob controle de = uma única parte.

Os pesquisadores salientam, ainda, que o encadeamento sequencial dos blocos na= Blockchain por si já tem a possibilidade de reduzir o impacto dos danos de atividades fraudulentas, pois estando cada bloco ligado ao imediatamente anterior, o cenário mais provável seria o de que uma eventual fraude fosse contida em algum momento contanto que algum dos blocos pudesse identificar o problema e interrompesse a continuidade do fluxo dela. Nesse caso, os dados fraudulentos, no máximo, afetariam algumas partes da cadeia, mas não ela toda.

Assim, realizadas essas considerações a partir de uma breve revisão da literatura sobre a parte de conceitos e definições da tecnologia Blockchain, discorre-se um po= uco mais, explicando-se de maneira concentrada alguns dos principais elementos = que suportam e conformam a estrutura operacional dela. Começa-se a análise a partir da ideia original por detrás dessa tecnologi= a, pois, conforme se apresenta ao longo do trabalho, hoje, a Blockchain= tem variações em relação ao que se buscava prioriza= r de propriedades quando ela foi apresentada, cada qual com especificidades próprias.

Para que a moeda virtual criptografada Bitcoin pudesse circular pela internet com segurança, era necessário garantir a confiabilidade das transações. Ao mesmo tempo, queria se promover um cená= rio de livre circulação para ela. A ideia foi conceber um sistema= no qual não houvesse uma autoridade centralizadora no controle das operações, como as instituições regulató= rias que se conhece para moedas físicas ou, ainda, um servidor central dedicado a isso. Uma situação como essa poderia comprometer a segurança em casos como ataques, exploração de falhas e vulnerabilidades, assim como colocar em questionamento a confiança em quem fosse manter a base centralizadora dos registros, o que poderia causar= uma dificuldade de aceitação da moeda no mercado.

Diante disso, a tecnologia Blockchain foi pensada por Nakamoto (2008) para fazer um caminho contrário: em vez de apoiar a confiabilidade das transações sobre uma autoridade central, ela descentralizou e= sse controle, concebendo a ideia de um mecanismo de confiança distribu&i= acute;do, trabalhando com uma rede ponto a ponto[2] e um algoritmo de consenso[3]. Quando o consenso é obtido, = o que acontece pela satisfação de uma série de regras defini= das no protocolo de consenso aplicado na rede, garante-se a transparência= e a consistência dos dados nos múltiplos nós participantes dela, pois há uma concordância entre os nós para que um conjunto de dados seja armazenado na cadeia de blocos de forma definitiva.<= o:p>

Além disso, essa impossibilidade de se alterar ou excluir conteúdo aument= a a confiabilidade no histórico cronológico dos eventos persisten= tes na cadeia de blocos, que se pode levantar a partir do conteúdo registrado no ledger distribuído e contribui para a cadeia de blocos armazenar dados de forma segura. Nessa rede ponto a ponto, não há um nó central, e cada nó participante pode tanto validar quanto comunicar transações aos demais. Cada nó mantém uma cópia do ledger (livro-razão) distribuído que é gerenciado coletivamente pelos computadores= ou nós da rede. Para que todos os nós tenham o mesmo conte&uacut= e;do nessas cópias, o estado da cadeia principal precisa ser reconhecido e propagado de maneira consistente por todos os nós para que haja uma uniformização, de modo que todos eles espelhem o mesmo estado. Daí a importância da sincronização dos blocos recém-gerados entre todos os nós da Blockchain.

Essa sincronização em uma rede Blockchain acontece por meio= da aplicação de mecanismos de propagação de blocos, que têm as próprias especificidades conforme o tipo e podem ser trabalhados com diferentes níveis de sincronia. As atualizações promovidas na rede são refletidas em toda= s as cópias, garantindo-se a fidedignidade e a segurança dos regis= tros de dados, o que gera confiança no sistema sem que haja a necessidade= de um terceiro confiável centralizando o controle dos dados no ledge= r.

A seguir, discorre-se sobre o encadeamento dos blocos. A tecnologia Blockc= hain expressa exatamente aquilo que ela é: uma sequência de blocos = (block) interligados entre si, que formam uma cadeia (chain), nos quais são armazenadas transações. Cada transaçã= ;o é em si um conjunto de dados que é encapsulado em um bloco, e cada bloco carrega um conjunto de campos, além de englobar dados de = uma ou mais transações. Dentre esses campos estão o tim= estamp (data e hora) das transações[4], dois valores de hash e um no= nce, que é um número de 32 bits[5]. Assim, cada bloco armazena um valor hash referente ao próprio bloco e o valor hash do bloco anterior.

Esse valor hash é únic= o e resultante de uma função matemática que, aplicada a uma entrada de dados de tamanho variável, produz como saída um va= lor de tamanho fixo. No entanto, se a partir de um conjunto de dados de entrada= se consegue gerar um valor hash, a recíproca não deve ser verdadeira. A ideia é que a par= tir do valor hash gerado não= seja possível derivar aquele conjunto de dados original passado para a função operar sobre.

Desse modo, conhecendo-se o valor hash do bloco anterior, se estabelece uma conexão entre blocos, na qual cada bloco subsequente consegue verificar a consistência dos dados do bloco anterior. Como todos conhecem o último hash calculado, qualquer um deles pode verificar se os dados não foram alterados, pois qualquer mínima alteraç&atil= de;o deverá resultar em um valor = hash diferente e, portanto, inválido. A utilização de algoritmos de hash fortalece a verificação de toda a cadeia de blocos, pois evita que o conteúdo desses seja alterado e que novos blocos sejam inseridos indevidamente na estrutura. Essa conformação cria a denominada imutabilidade da cadeia de blocos. Se uma transação contiver erros, uma nova transação deve ser criada, e ambas devem ficar visíveis.

Ainda analisando a concepção inicial da Blockchain, comenta-= se um pouco sobre as variações nas permissões de acesso. A ideia original da Blockchain concebia um certo nível de anoni= mato em uma rede pública, mas é inviável de se operar sob e= ssa conformação em diversos cenários. Hoje, a tecnologia <= i>Blockchain pode ser trabalhada a partir de uma concepção de permiss&atil= de;o de rede de vários tipos, dentre as quais pública e privada, c= om a possibilidade de modelos híbridos. O desenvolvimento dessa tecnologi= a ao longo do tempo, que foi aprimorada e atualmente apresenta variações e é integrada a outras estruturas, já permite que se trabalhe a Blockchain a partir de participantes com identidades conhecidas e autorizadas a realizar um conjunto delimitado de transações às quais têm as identidades vinculada= s.

Quando se estrutura a Blockchain a partir de um modelo em que se tem conhecimento e controle sobre os participantes, de modo que cada um tem uma identidade única, consegue-se trabalhar melhor aspectos como as políticas de restrição para a participaçã= ;o na rede, assim como o quanto de detalhes e de conteúdo das transações realizadas se pode delegar de visão a cada = um. Além disso, torna-se mais viável de se trabalhar a proteção de dados e de se gerenciar as ações praticadas por cada participante.

Assim, conforme o modo como se estrutura a Blockchain, é possível se trabalhar uma arquitetura em que algumas propriedades se= jam maximizadas em favor da aplicação a qual se destina e outras sejam reduzidas ou suprimidas em relação ao modelo original da tecnologia. Na prática, situações como essas são muito comuns quando se trabalham questões que envolvem seguran&ccedi= l;a e escalabilidade, por exemplo, na qual, por vezes, a primeira pode ser melh= or provida em um certo modelo, porém, com redução da segu= nda.

O cenário de aplicação e as demandas associadas devem ser considerados na escolha do modelo de permissão de acesso sobre o qua= l a Blockchain será trabalhada, de modo que seja possível fornecer a segurança necessária para suportar e viabilizar a realização da tarefa de acordo com os atributos que devem ser satisfeitos na realidade concreta. Considerando-se uma rede na qual os participantes são conhecidos e confiáveis, o consenso das par= tes na Blockchain pode acontecer por meio de vários mecanismos, p= ara além dos mais usuais, pensados inicialmente para suportar uma rede pública de transações com a moeda Bitcoin. =

Na ideia original da Blockchain, o consenso acontecia por meio da aplic= ação do algoritmo Proof-of-Work (PoW) (Gupta; Mahajan, 2020). Esse algoritmo ainda &e= acute; utilizado em diversos cenários, mas ele é bastante caro computacionalmente falando. Hoje, há vários algoritmos de consenso para suportar e conferir excelentes características à tecnologia Blockchain, como o Proof-of-Stake (PoS) e o Delegated Proof-of-Stake (DPoS), que consomem menos recursos computacionais do que o Proof-of-Work. Cada um desses algoritmos tem as especificidades próp= rias e realizam o consenso de diferentes formas.

De acordo com o caso concreto e aquilo que se busca e que se quer priorizar na implementação, pode se decidir pela aplicação d= e um ou outro algoritmo. Assim, se houver outros mecanismos de consenso que se mostrem mais adequados para a arquitetura proposta e a necessidade concreta, eles também poderão ser utilizados.

Conforme pode-se perceber pelo explicado até aqui, a Blockchain de hoje não é exatamente aquela Blockchain do artigo publicado= por Nakamoto, em 2008. Diz-se isso no sentido de que houve muitas evoluções na tecnologia Blockchain, a partir daquele modelo proposto por ele. Isso faz com que se possa explorar algumas características do modelo original da Blockchain em modelos variantes, que, por vezes, conformam desvios mais acentuados em relaç= ;ão ao que se propunha na ideia inicial.

Essa situação faz com que alguns autores questionem na literatura = se de fato as variações devem ser consideradas como tipos de = Blockchain ou se elas já se afastaram demais da essência para serem nomin= adas assim. Neste trabalho, uniformiza-se o termo com o entendimento mais difund= ido na literatura, que considera as variações como formas de B= lockchain. Do ponto de vista da tecnologia, há muito mais do que o apresentado = aqui para ser explorado, mas, conforme referido no começo deste trabalho, aprofundamentos maiores ficam para outra oportunidade.

 

1.2  Por que pensar em explorar características e propriedades da tecnologia Blockchain na cadeia de custódia da prova digital no Brasil?

 

O avanço das tecnologias trouxe desafios na esfera penal para muito além das violações de direitos na persecuç&atil= de;o penal (Steffen, 2023). Cada vez mais, atividades ilícitas são praticadas a partir da exploração das possibilidades, especificidades e potencialidades do plano virtual e dos recursos tecnológicos. A dificuldade na obtenção de indí= cios de autoria e provas de materialidade aumenta substancialmente nesses cenários, diante dos quais, frequentemente, os Estados não se encontram preparados para suportar a persecução penal sem dar causa a questionamentos sobre a validade da prova.

A perícia digital forense é um importante e necessário recurso do Estado para garantir a aplicação da lei nas investigações criminais modernas. Ela necessita de mecanismos= de tratamento robustos para garantir a manutenção do estado orig= inal dos dados digitais, que é algo que impacta na validade e no uso deles junto aos tribunais.

A produção de prova digital é complexa. As características dos dados digitais, como a natureza frágil e,= em alguns casos, volátil, fazem com eles fiquem mais suscetíveis= a adulterações do que conteúdos físicos e mais expostos a alterações não intencionais quando sobre os dados digitais incidem procedimentos de manuseio inadequados, algo que pode= comprometer a integridade dos dados. Essa dinâmica torna a coleta e a preservação dos dados digitais um desafio aos Estados.

A cadeia de custódia é essencial para se garantir a integridade= e a autenticidade dos dados digitais. Por meio da cadeia de custódia aplicada aos dados digitais, se estabelece um processo de documentação e de manutenção de registros que mostra o histórico cronológico do manuseio dos dados. Isso é muito importante porque ter um registro fidedigno de todos os deta= lhes – dentre eles informações completas sobre quem teve con= tato com o conteúdo, quando e como os dados digitais foram acessados e manipulados – permite reconstituir o que aconteceu com uma prova quan= do a validade dela é questionada e que tratamento recebeu quando foi aces= sada pelos diferentes níveis de hierarquia das autoridades competentes. <= o:p>

Logo, não basta a existência meramente formal de uma cadeia de custódia nem de uma cadeia de custódia implementada de qualqu= er jeito, ou operacionalizada da mesma maneira como se procedia anos atr&aacut= e;s, como se isso fosse suficiente para garantir os atributos que precisam ser preservados para se conferir condição de validade aos dados digitais como prova. O que tradicionalmente se fazia na ciência foren= se está sendo continuamente tensionado, ainda mais em um cenário como o atual, em que cada vez mais há dispositivos eletrônicos sendo objeto de perícia, com características específic= as e uma grande massa de dados com diferentes formatos a ser coletada e examinad= a.

É preciso que a cadeia de custódia seja pensada e efetivada de um modo= que garanta a preservação dos dados digitais que ela visa manter = íntegros para a utilização na persecução penal. Do momen= to da coleta do vestígio até a utilização do conteúdo em decisões pelo juízo, vários s&atild= e;o os acessos feitos sobre os dados digitais. Independentemente da natureza digital ou física, a cadeia de custódia deve entregar um modo= de tratamento que não retire dos materiais custodiados a condição de validade para utilização em julgame= nto. No entanto, somente garantir que não há prejuízos &agr= ave; validade dos dados digitais não basta. É preciso ter transparência na cadeia de custódia para ser possível demonstrar e sustentar a validade da prova apoiado no conhecimento em tempo real de todos os acessos feitos ao material e de como esses acessos n&atild= e;o impactaram em nenhuma modificação, refletindo na confiabilida= de do conteúdo e garantindo-se que a prova não sofreu interferências na condição original.<= /p>

Nesse sentido, a tecnologia Blockchain pode contribuir ao fornecer atribut= os como a imutabilidade, a rastreabilidade, a descentralização, a transparência, a segurança e a privacidade, permitindo um gerenciamento eficiente dos dados digitais que garanta a admissibilidade e a credibilidade desse conteúdo no processo penal. A combinação e a exploração de propriedades da Blockchain com outras tecnologias faz com que se possa alcançar um alto nível de gerenciamento de acesso por meio de identidades digitais com privilégios, por exemplo.

No Brasil, a cadeia de custódia entrou expressamente por meio das alterações introduzidas pelo chamado Pacote Anticrime (Lei 13.964/2019), sendo definida no artigo 158-A e seguintes do Código de Processo Penal (CPP). Por meio da observância da cadeia de custódia, deve ser possível rastrear cronologicamente todo o acesso e a manipulação dos vestígios, assim como mantê-los intactos ao longo da persecução penal, preservando-os no exato estado tal qual se encontravam no momento da coleta= na cena do crime ou na vítima. Embora não haja a previsão expressa no texto do artigo de lei sobre o tratamento incidir sobre os dados digitais, aplica-se de igual maneira por decorrência lógica do próprio instituto.

Algoritmos como os de geração de hash podem ser utilizados para demonstrar que nenhuma alteração aconteceu nos dados digitais, mas, na prática, nem sempre são aplicados. No entanto, ainda que se aplique um algoritmo de geração de hash, = isso por si só não garante a confiabilidade da prova digital, pois= o valor hash não se presta= a atestar a confiabilidade e a segurança na inalteração = do conteúdo digital antes de ele ter sido submetido ao algoritmo. Em ou= tras palavras, quando se efetua a verificação de integridade analisando-se o valor hash, está se determinando s= e os dados foram ou não alterados desde que o valor hash foi calculado.

Além disso, o valor hash precisa ser registrado e guardado com segurança. A manipulação dos dados digitais anterior à aplicação da função hash n&ati= lde;o será capturada pelo algoritmo, que quanto a isso não atestará nada. Por isso a importância de haver controles técnicos e processuais anteriores à geração do valor hash, efetivando-se a cad= eia de custódia da prova digital. Contudo, uma cadeia de custódia so= bre a qual não se possa assegurar que, nas etapas dela, preservam-se atributos como a integridade, a autenticidade e a confiabilidade da prova não pode ser usada para validar ou conferir à prova aquilo que a partir da cadeia de custódia n&= atilde;o se pode concluir porque não se consegue demonstrar, repetir ou verificar.

De um lado, a inobservância da cadeia de custódia pode significar= a absolvição de culpados, do outro, pode significar a condenação de inocentes. Em meio a tudo isso, o exercí= cio do contraditório e da ampla defesa (com plenitude de defesa) pode se tornar impraticável, corroendo-se a estrutura do devido processo leg= al. Uma cadeia de custódia confiável precisa ser condizente com as necessidades demandadas no processo penal pelas diferentes naturezas de pro= vas, evitando-se transformar em alternativa primária (ou em procedimento padrão) a flexibilização que conduz à aceitação daquilo que não se consegue assegurar adequadamente os mais elementares atributos necessários à validade do conteúdo como prova no processo penal.

A forma como se estabelece e se implementa a cadeia de custódia deve afastar questionamentos sobre a validade dos dados digitais em qualquer eta= pa da persecução penal. Em diversas situações, apl= ica-se a função hash sob= re os dados digitais para garantir a confiabilidade na integridade deles, mas fal= ha-se na garantia de outros atributos essenciais, que precisam ser preservados. I= sso acontece em grande medida em decorrência de problemas que envolvem essencialmente questões relacionadas à cadeia de custó= dia dos dados digitais. Exemplificando a partir de cenários reais e recorrentes, há situações como a inobservância da cadeia de custódia (1) no acondicionamento e transporte de dispositi= vos físicos, como HDs e pen drives, em investigações nacio= nais e nas que envolvem cooperação jurídica internacional, = (2) no registro documental dos procedimentos adotados pela polícia quanto à coleta e preservação dos dados digitais e (3) na documentação da cronologia de acesso aos vestígios digitais. Essas situações são algumas das várias que podem dar causa à quebra da cadeia de custódia.

No Brasil, hoje, a fim de atender à disposição do procedimento da cadeia de custódia constante no Código de Processo Penal (1941)[6], no concernente à rastreabili= dade do acesso aos vestígios, em diversas situações, ainda = se faz necessário o preenchimento de formulários, muitas vezes, = em papel. Há também a necessidade de migração de históricos manualmente descritos e armazenados para sistemas informatizados de gestão de cronologia e acesso. Ainda que os docume= ntos sejam produzidos na maior parte das repartições por meio de ferramentas – como processadores e editores de texto – e que ma= is tarde se faça o upload desses formulários ao sistema eletrônico, ou que as informações sejam inseridas diretamente em um sistema próprio, isso por si pode representar um consumo de tempo do recurso humano que poderia ser melhor investido e aloca= do, examinando-se rapidamente, com métricas de sistema, informaç&= otilde;es como as de cronologia/historicidade, por exemplo.

Além disso, situações como o preenchimento manual de documentação podem implicar em prejuízo ao andamento processual e em quebra da cadeia de custódia, como nos casos em que = se verifica a não realização da juntada de um formulário contendo informação pertinente ou de necessária observação e documentação. Há outras situações exemplificáveis: quando jun= tado o formulário, é possível que informações nele constantes estejam permeadas com problemas de inexatidão ou que= nem mesmo tenham sido documentadas. Também pode acontecer de que na transcrição das informações do papel a um siste= ma de gestão de histórico de cronologia e acesso específi= co da unidade laboratorial de um Estado aconteçam inconsistências= que as afetem e que elas sejam persistidas desse modo, comprometidas por situações diversas, dentre as quais situações análogas ao descrito.

Um simples erro pode afetar toda a persecução penal e, em muitos casos, a prova digital pode ser a única prova existente ou, ainda, a principal fonte de sustentação de uma tese no processo. O reconhecimento da quebra da cadeia de custódia pela impossibilidade = de se assegurar a integridade dos dados digitais pode acarretar a inadmissibilidade da utilização do material como prova e a retirada dele dos autos, assim como das provas derivadas, em atendimento ao disposto no artigo 157, § 1º, do Código de Processo Penal (Brasil, 1941).

Diante disso, é importante se pensar em uma estrutura que permita concretiz= ar os objetivos da cadeia de custódia sobre os dados digitais, demonstr= ando a todos os envolvidos na persecução penal que esses dados não foram adulterados em nenhum momento. Uma estrutura eficiente, que entregue atributos como agilidade, escalabilidade, transparência, con= fiabilidade, segurança, accountability e exatidão na verificação de informações. Uma estrutura que entregue subsídios para que, em vez de se construir confiança= na preservação da prova a partir da obrigação de se acreditar no que é afirmado por agentes da lei, por exemplo, se possa construir confiança a partir de métricas do sistema, que poss= am ser questionadas e auditadas.

Nesse sentido, a persecução penal brasileira pode se beneficiar da implementação de uma arquitetura/design que explore as propriedades da tecnologia Blockchain a fim de desmaterializar o processo da cadeia de custódia, bem como garantir a integridade auditável dos dados digitais e a rastreabilidade de todo o acesso e manipulação sobre eles. Isso também é relevante= no aspecto das tramitações que envolvem a cooperaçã= ;o jurídica internacional, as quais podem incrementar o risco da perda = de integridade dos dados digitais. Por isso é importante o conhecimento sobre como a alteração no estado da prova custodiada acontece= u ao longo do tempo.

Conforme explicado até aqui, a tecnologia Blockchain evoluiu. Quando se fala no presente trabalho em se explorar Blockchain na cadeia de custódia da prova digital no Brasil, não se trata de uma aplicação direta daquela Blockchain do modelo original, feita para suportar o Bitcoin e que trabalhava com um certo nível de anonimato em uma rede pública.

No contexto da cadeia de custódia, aquele modelo não sustentaria= a aplicação da tecnologia. O que está se propondo &eacut= e; a exploração das propriedades dessa tecnologia – que podem ser reguladas em diferentes níveis para satisfazer as necessidades da realidade local – e das variações da tecnologia Bloc= kchain original – dentre as quais se destaca a Blockchain Ethereum –, conjuntamente com outras estruturas, para apoiar atividades como a= s de análise, controle e monitoramento da preservação dos d= ados digitais.

A tecnologia Blockchain, como qualquer outra tecnologia, não de= ve ser confundida com algo que resolve todos os problemas. Nem deve ser confun= dida com uma substituição ao banco de dados, como por vezes alguns= frameworks propõem irrestritamente sob pena de se causar uma sobrecarga que inviabilize a utilização em alguns cenários[7] (assunto para outro artigo). No ent= anto, a tecnologia Blockchain – do modelo original do Bitcoin &agrav= e;s variações da Blockchain existentes hoje[8] – entrega propriedades que podem ser exploradas conjuntamente com out= ras técnicas, ferramentas e estruturas[9] para compor uma arquitetura da qual a cadeia de custódia da prova digital se beneficie quanto às necessidades que demandam satisfação no processo penal brasileiro.

 =

CONSIDERAÇÕES FINAIS<= o:p>

 

A cadeia de custódia no Brasil precisa ser aperfeiçoada para qu= e, a partir do modo como é concretizada, se consiga identificar com precisão, em qualquer momento da tramitação processual, quem esteve ou está no controle da prova, assim como o que, como e p= or qual motivo aplicou-se um determinado procedimento ou modo de ação sobre ela. Essa observação é coloca= da de maneira mais ampla, sem o enfoque na prova digital, porque cabe a qualqu= er natureza de prova. Especificamente no caso da prova digital, como pretendeu= -se demonstrar neste trabalho, a complexidade envolvida na preservaç&ati= lde;o de atributos, como a integridade, aumenta diante da maior facilidade de se promover a adulteração dos dados digitais custodiados.

Ao se pensar na preservação da prova digital no contexto de um devido processo legal como o instituído no Brasil, é preciso = ir mais além da limitação da verificação de integridade apoiada na existência de um código hash. Conforme se explicou neste trabalho, o que aconteceu com os dados antes de o valor hash ser gerado, embora já incidindo sobre eles a proteção da cadeia de custódia, não é capturado pelo algoritmo de geração do hash. Nesse aspecto, há a necessidade de outros controles para garantir a integridade da prova digital a fim de permitir se afirmar que os dados sobr= e os quais se produziu a imagem forense e a geração do valor hash efetivamente refletem o estado original deles.

A dificuldade na rastreabilidade precisa da cronologia de acesso e manipulação da prova, a falta de uma uniformizaç&atild= e;o procedimental de necessária observação e de um plano atualizado de gerenciamento de dispositivos e de dados digitais que acompan= he a evolução tecnológica são alguns dos cená= rios que podem impactar em prejuízos na preservação da integridade e no comprometimento da autenticidade da prova digital. Esse ti= po de prova, pela própria natureza, que lhe confere característi= cas específicas, demanda um tratamento diferenciado, que não &eac= ute; entregue quando se aplicam métodos tradicionais de preservação de conteúdo de natureza diversa.

No concernente à cadeia de custódia, não se pode limitar o entendimento a um conjunto de ações praticadas para satisfaze= r as definições do legislador como se ela fosse mera formalidade na qual cabe qualquer forma de atuação. Não se trata de apenas encaixar o tratamento a ser dado ao conteúdo custodiado em um padrão praticado e concebido para provas de outras naturezas, com características e propriedades bastante distintas. Essa dinâmi= ca tende a colocar os dados digitais sob a proteção de uma cadei= a de custódia inadequada para esse tipo de prova, sem condiç&otild= e;es de assegurar e irradiar no contexto do processo aquilo que se necessita garantir e demonstrar sobre os dados digitais.

Quando se trata de prova digital, tem que se pensar em uma cadeia de custód= ia que a sustente, que capture as particularidades desse tipo de conteúdo e= que o trate adequadamente, provendo controles técnicos e processuais ant= es mesmo da geração do valor hash. Isso tem repercussão direta no exercício de um processo penal democrático, no respeito, na garantia e na efetivação = de disposições constitucionalmente expressas.<= /p>

A cadeia de custódia da prova digital deve permitir identificar de man= eira inequívoca todos os detalhes do acesso à prova, inclusive como foram transferidas e as condições de segurança durante= o manuseio e o armazenamento, assim como toda a atuação dos profissionais forenses. Nesse sentido, conforme explorado no presente traba= lho, a tecnologia Blockchain pode contribuir ao fornecer um modelo com at= ributos, características e propriedades que podem ser explorados conjuntamente com outras tecnologias na efetivação de uma cadeia de custódia transparente, rapidamente auditável, segura, de rastreamento preciso e confiável, que promova a accountability e que atenda às necessidades demandadas no processo penal brasileiro diante das especificidades da prova digital.

 

REFERÊNCIAS

 

ALHARBY, Maher; VAN MOORSEL, Aad. Blockchain-based smart contra= cts: a systematic mapping study. Computer Science & information tecnology<= span lang=3DEN-US style=3D'mso-bidi-font-size:12.0pt;mso-bidi-font-family:"Times= New Roman"; color:black;background:white;mso-ansi-language:EN-US'>, [s.l.], out. 2017. DOI: https://doi.org/10.48550/arXiv.1710.06372. Disponível em: https://arxiv.org/abs/1710.06372. Acesso em: 12 jun. 2023.

 

BRASIL. Decreto-lei n. 3.689, de 3 de outubro= de 1941. Código de Processo Penal. Brasília, DF: Presidência da República, 1941. Disponível em: https://www.planalto.gov.br/ccivil_03/decreto-lei/del3689.htm. Acesso em: 1 set. 2025.

 =

BRASIL. Lei n. 13.964, de 24 de dezembro de 2= 019. Aperfeiçoa a legislação penal e processual penal. Brasília, DF: Presidência da República, 2019. Disponível em: https://www.planalto.gov.br/ccivil_03/_ato2019-2022/2= 019/lei/l13964.htm. Acesso em: 1 set. 2025.

 

GUPTA, Chandranshu; MAHAJAN, Asmi= ta. Evaluation of proof-of-work consensus algorithm for blockchain networks. In: INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND NETWORKING TECHNOLOGIES, 11, 2020, Kharagpur, India. Anais [...]. [S.l.], IEEE Xplore, 15 out. 2020. = DOI: 10.1109/ICCCNT49239.2020.9225676. Disponível em: https://ieeexplore.ieee.org/ document/9225676. Acesso em: 15 jun. 2023.

 

KSHETRI, Nir. Can Blockchain strengthen the Internet of Things? IT professional, [= s.l.], v.= 19, n. 4, p. 68-72, 17 ago. 2017. DOI: <= span style=3D'mso-bidi-font-size:12.0pt;mso-bidi-font-family:"Times New Roman"; color:black;mso-color-alt:windowtext;background:white'>10.1109/MITP.2017.30= 51335. Disponível em: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=3D&arnumber=3D8012302. <= /span>Acesso em: 25 ju= n. 2023.

 

LYKIDIS, Ioannis; DROSATOS, George; RANTOS, Konstantinos. The use of Blockchain technology in e-government services. Computers= , [s.l.], v. 10, n. 12, dez. 2021. DOI: https://doi.org/10.3390/compute= rs10120168. Disponível em: https://www.mdpi.com/2073-431X/10/12/168. Acesso em: 12 jun. 2023.

 

NAK= AMOTO, Satoshi. Bitcoin: A peer-to-peer electronic cash system. Bitcoin.o= rg, [s.l.], 2008. Disponível em: https://bitcoin.org/bitcoin.pdf. Acesso em: 12 = jun. 2023. White paper.

 

ROMAN-BELMONTE, Juan; CORTE-RODRIGUEZ, Hortensia De la; RODRIGUEZ-MERCHAN, E. Carlos. How blockchain technology can change medicine. Po= stgraduate medicine, [s.l.], v. 130, n. 4, p. 420-427, 2 maio 2018. <= span style=3D'color:black'>DOI: https://doi.org/10.1080/00325481.2018.1472996= . Disponível em: https://www.tandfonline.com/doi/full/10.1080/00325481.2018.1472996. = Acesso em: 15 ju= n. 2023.

 

SINAGA, Henry Dianto P.; BOLIFAAR, Andhy. Blockcha= in adoption for plea bargaining of corporate crime in Indonesia. In: INTERNATIONAL CONFERENCE ON BLOCKCHAIN TECHNOLOGY= , 2, 2020. Hilo, HI. Anais [...]. [= S.l.]: Association for computing machinery, 2020.

p. 115-119. DOI: htt= ps://doi.org/10.1145/3390566.3391680. Disponível = em: https://dl.acm.org/doi/10.1145/3390566.3391680. Acesso em: 1 set. 2025.

 

STEFFEN, Catian= e. A inteligência artificial e o processo penal: a utilizaçã= o da técnica na violação de direitos. Revista da EMERJ, Rio de Janeiro, v. 25, n. 1, 2023. Disponível em: https://ojs.emerj.com.br/index.php/revistadaemerj/art= icle/view/454. Acesso em: 12 jun. 2023.

 

 =

 

 =

 =



* Doutoranda na Pontifícia Universidade Católica do Rio Grande do Sul (Direit= o).

[1] = Entenda ledger como se fosse um livro-razão semelhante a um livro contábil.

[2] Na rede pont= o a ponto, cada ponto ou nó pode ser tanto cliente quanto servidor, de m= odo que não há a necessidade de os nós se reportarem a um nó intermediário, específico, centralizador da confiança na rede para conhecer e confirmar um determinado estado de= uma transação, por exemplo, vez que cada nó pode tanto env= iar quanto receber transações.

[3] Os algoritmos de consenso buscam que os nós cheguem a um acordo sobre a atualização do estado do ledger, fornecendo uma maneir= a de os nós manterem a consistência e a confiabilidade dos dados na cadeia de blocos sem necessitar de uma autoridade central para isso. Uma vez que o conjunto de dados sobre o qual se busca a concordância dos nós seja aceito para inserção na cadeia de blocos, o conteúdo não poderá ser alterado ou excluído. Após a aplicação de algoritmos de consenso, mecanismos= de propagação dos blocos garantem aos participantes da rede o conhecimento de um estado único da cadeia de blocos, que é replicado entre os nós.

[4] Em diversos cenários de aplicação prática, ter controle sob= re a cronologia das ações é fundamental, não somente pela contribuição na detecção de ações fraudulentas como também pela entrega de subsídios informacionais necessários para se restabelecer o estado anterior. Ao se ter controle sobre o tempo e a ordem das transações, torna-se possível auditar os registros de forma independente.

[5] Conforme a variação da Blockchain, pode-se trabalhar com mais cam= pos e com números maiores de bits do que os descritos.

[6] = Código de Processo Penal, artigo 158-E, § 3º expressa que “Todas as pessoas que tiverem acesso ao vestígio armazenado deverão ser= identificadas e deverão ser registradas a data e a hora do acesso”.

[7] A fim de evi= tar este pensamento de que a Blockchain seria uma tecnologia usada em substituição a um banco de dados foi que se preferiu usar a expressão base de dados ao longo deste trabalho.

[8] Dentre as quais se destacam a Blockchain Ethereum e a Hyperledger.

[9] = Os smart contracts, por exemplo, podem ser utilizados para a atribuição de direitos de acesso sobre a prova digital aos envolvidos na tramitação judicial de cada caso concreto. Assi= m, quando se utiliza essa estrutura, pode-se atingir um nível de flexibilidade mais elástico na adaptação do modelo desenvolvido ao que é demandado no processo penal local, além= de se fornecer métricas de conformidade para o ciclo de vida de tratame= nto da prova digital.

------=_NextPart_01DC5365.5C75D260 Content-Location: file:///C:/32CB10EF/file8943_arquivos/item0001.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml <_activity xmlns= =3D"9eaa0b54-ad1c-4201-b6a1-991c8e74b476" xsi:nil=3D"true"/> ------=_NextPart_01DC5365.5C75D260 Content-Location: file:///C:/32CB10EF/file8943_arquivos/props002.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DC5365.5C75D260 Content-Location: file:///C:/32CB10EF/file8943_arquivos/item0003.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DC5365.5C75D260 Content-Location: file:///C:/32CB10EF/file8943_arquivos/props004.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DC5365.5C75D260 Content-Location: file:///C:/32CB10EF/file8943_arquivos/item0005.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml DocumentLibraryFormD= ocumentLibraryFormDocumentLibraryForm ------=_NextPart_01DC5365.5C75D260 Content-Location: file:///C:/32CB10EF/file8943_arquivos/props006.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DC5365.5C75D260 Content-Location: file:///C:/32CB10EF/file8943_arquivos/item0007.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml This value indicates the number of saves or revisio= ns. The application is responsible for updating this value after each revis= ion. ------=_NextPart_01DC5365.5C75D260 Content-Location: file:///C:/32CB10EF/file8943_arquivos/props008.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DC5365.5C75D260 Content-Location: file:///C:/32CB10EF/file8943_arquivos/themedata.thmx Content-Transfer-Encoding: base64 Content-Type: application/vnd.ms-officetheme UEsDBBQABgAIAAAAIQDp3g+//wAAABwCAAATAAAAW0NvbnRlbnRfVHlwZXNdLnhtbKyRy07DMBBF 90j8g+UtSpyyQAgl6YLHjseifMDImSQWydiyp1X790zSVEKoIBZsLNkz954743K9Hwe1w5icp0qv 8kIrJOsbR12l3zdP2a1WiYEaGDxhpQ+Y9Lq+vCg3h4BJiZpSpXvmcGdMsj2OkHIfkKTS+jgCyzV2 JoD9gA7NdVHcGOuJkTjjyUPX5QO2sB1YPe7l+Zgk4pC0uj82TqxKQwiDs8CS1Oyo+UbJFkIuyrkn 9S6kK4mhzVnCVPkZsOheZTXRNajeIPILjBLDsAyJX89nIBkt5r87nons29ZZbLzdjrKOfDZezE7B /xRg9T/oE9PMf1t/AgAA//8DAFBLAwQUAAYACAAAACEApdan58AAAAA2AQAACwAAAF9yZWxzLy5y ZWxzhI/PasMwDIfvhb2D0X1R0sMYJXYvpZBDL6N9AOEof2giG9sb69tPxwYKuwiEpO/3qT3+rov5 4ZTnIBaaqgbD4kM/y2jhdj2/f4LJhaSnJQhbeHCGo3vbtV+8UNGjPM0xG6VItjCVEg+I2U+8Uq5C ZNHJENJKRds0YiR/p5FxX9cfmJ4Z4DZM0/UWUtc3YK6PqMn/s8MwzJ5PwX+vLOVFBG43lExp5GKh qC/jU72QqGWq1B7Qtbj51v0BAAD//wMAUEsDBBQABgAIAAAAIQBreZYWgwAAAIoAAAAcAAAAdGhl bWUvdGhlbWUvdGhlbWVNYW5hZ2VyLnhtbAzMTQrDIBBA4X2hd5DZN2O7KEVissuuu/YAQ5waQceg 0p/b1+XjgzfO3xTVm0sNWSycBw2KZc0uiLfwfCynG6jaSBzFLGzhxxXm6XgYybSNE99JyHNRfSPV kIWttd0g1rUr1SHvLN1euSRqPYtHV+jT9yniResrJgoCOP0BAAD//wMAUEsDBBQABgAIAAAAIQAh WqKEIQcAANsdAAAWAAAAdGhlbWUvdGhlbWUvdGhlbWUxLnhtbOxZT28bRRS/I/EdRnsvsRMnTaI6 VezYDbRpo9gt6nG8O/ZOM7uzmhkn8Q21RyQkREEcqMSNAwIqtRKX8mkCRVCkfgXezOyud+Jxk5QA FTSH1jv7e2/e+70/82evXD1KGDogQlKeNoP6e7UAkTTkEU1HzeB2v3tpNUBS4TTCjKekGUyIDK5u vPvOFbyuYpIQBPKpXMfNIFYqW19YkCEMY/kez0gK74ZcJFjBoxgtRAIfgt6ELSzWaisLCaZpgFKc gNpbwyENCeprlcFGobzD4DFVUg+ETPS0auJIGGy0X9cIOZFtJtABZs0A5on4YZ8cqQAxLBW8aAY1 8xcsbFxZwOu5EFNzZCtyXfOXy+UC0f6imVOMBuWk9W5j7fJWqd8AmJrFdTqddqde6jMAHIbgqbWl qrPRXa23Cp0VkP05q7tdW641XHxF/9KMzWutVmt5LbfFKjUg+7Mxg1+trTQ2Fx28AVn88gy+0dps t1ccvAFZ/MoMvnt5baXh4g0oZjTdn0HrgHa7ufYSMuRs2wtfBfhqLYdPUZANZXbpKYY8VfNyLcH3 uOgCQAMZVjRFapKRIQ4hi9uY0YGgegK8TnDljR0K5cyQngvJUNBMNYMPMgwVMdX38tl3L589Qcf3 nx7f//H4wYPj+z9YRY7UNk5HVakX33z6x6OP0O9Pvn7x8HM/Xlbxv3z/8c8/feYHQvlMzXn+xeNf nz5+/uUnv3370APfFHhQhfdpQiS6SQ7RHk/AMcOKazkZiPNJ9GNMqxKb6UjiFOtZPPo7KnbQNyeY YQ+uRVwG7whoHz7gtfE9x+BeLMYqj7fj2fU4cYA7nLMWF14Wruu5KjT3x+nIP7kYV3F7GB/45m7j 1IlvZ5xB36Q+le2YOGbuMpwqPCIpUUi/4/uEePi6S6nD6w4NBZd8qNBdilqYeinp04GTTVOhbZpA XCY+AyHeDjc7d1CLM5/XW+TARUJVYOYxvk+YQ+M1PFY48ans44RVCb+BVewzsjcRYRXXkQoiPSKM o05EpPTJ3BLgbyXo16F1+MO+wyaJixSK7vt03sCcV5FbfL8d4yTzYXs0javY9+U+pChGu1z54Dvc rRD9DHHA6dxw36HECffp3eA2HTkmTRNEvxkLTyyvEe7kb2/ChpiYVgNN3enVCU1f1bgT6Nu54xfX uKFVPv/qkcfuN7VlbwIJvprZPtGo5+FOtuc2FxF987vzFh6nuwQKYnaJetuc3zbn4D/fnOfV88W3 5GkXhgatt0x2o2223cncXfeQMtZTE0ZuSLPxlrD2RF0Y1HLmxEnKU1gWw09dyTCBgxsJbGSQ4OpD quJejDPYtNcDrWQkc9UjiTIu4bBohr26NR42/soeNZf1IcR2DonVDo/s8JIeLs4apRpj1cgcaIuJ lrSCs062dDlXCr69zmR1bdSZZ6sb00xTdGYrXdYUm0M5UF66BoMlm7CpQbAVApZX4Myvp4bDDmYk 0rzbGBVhMVH4e0KUe20diXFEbIic4QqbdRO7IoVm/NPu2Rw5H5sla0Da6UaYtJifP2ckuVAwJRkE T1YTS6u1xVJ02AzWlheXAxTirBkM4ZgLP5MMgib1NhCzEdwVhUrYrD21Fk2RTj1e82dVHW4u5hSM U8aZkGoLy9jG0LzKQ8VSPZO1f3G5oZPtYhzwNJOzWbG0Cinyr1kBoXZDS4ZDEqpqsCsjmjv7mHdC PlZE9OLoEA3YWOxhCD9wqv2JqITbClPQ+gGu1jTb5pXbW/NOU73QMjg7jlkW47xb6quZouIs3PST 0gbzVDEPfPPabpw7vyu64i/KlWoa/89c0csBXB4sRToCIdzsCox0pTQDLlTMoQtlMQ27AtZ90zsg W+B6Fl4D+XC/bP4X5ED/b2vO6jBlDWdAtUdHSFBYTlQsCNmFtmSy7xRl9XzpsSpZrshkVMVcmVmz B+SAsL7ugSu6BwcohlQ33SRvAwZ3Mv/c57yCBiO9R6nWm9PJyqXT1sA/vXGxxQxOndhL6Pwt+C9N LFf36epn5Y14sUZWHdEvprukRlEVzuK3tpZP9ZomnGUBrqy1tmPNeLy4XBgHUZz1GAbL/UwGV0BI /wPrHxUhsx8r9ILa53vQWxF8e7D8IcjqS7qrQQbpBml/DWDfYwdtMmlVltp856NZKxbrC96olvOe IFtbdpZ4n5PschPlTufU4kWSnTPscG3H5lINkT1ZojA0LM4hJjDmK1f1QxQf3INAb8GV/5jZT1My gydTB9muMNk14NEk/8mkXXBt1ukzjEaydI8MEY2OivNHyYQtIft5pNgiG7QW04lWCi75Dg2uYI7X ona1LIUXTxcuJczM0LJLYXOX5lMAH8fyxq2PdoC3TdZ6rYurYIqlf4WyMxjvp8x78jkrZfag+MpA vQZl6ujVlOVMAXmziQefNwWGo1fP9F9YdGymm5Td+BMAAP//AwBQSwMEFAAGAAgAAAAhAA3RkJ+2 AAAAGwEAACcAAAB0aGVtZS90aGVtZS9fcmVscy90aGVtZU1hbmFnZXIueG1sLnJlbHOEj00KwjAU hPeCdwhvb9O6EJEm3YjQrdQDhOQ1DTY/JFHs7Q2uLAguh2G+mWm7l53JE2My3jFoqhoIOumVcZrB bbjsjkBSFk6J2TtksGCCjm837RVnkUsoTSYkUiguMZhyDidKk5zQilT5gK44o49W5CKjpkHIu9BI 93V9oPGbAXzFJL1iEHvVABmWUJr/s/04GolnLx8WXf5RQXPZhQUoosbM4CObqkwEylu6usTfAAAA //8DAFBLAQItABQABgAIAAAAIQDp3g+//wAAABwCAAATAAAAAAAAAAAAAAAAAAAAAABbQ29udGVu dF9UeXBlc10ueG1sUEsBAi0AFAAGAAgAAAAhAKXWp+fAAAAANgEAAAsAAAAAAAAAAAAAAAAAMAEA AF9yZWxzLy5yZWxzUEsBAi0AFAAGAAgAAAAhAGt5lhaDAAAAigAAABwAAAAAAAAAAAAAAAAAGQIA AHRoZW1lL3RoZW1lL3RoZW1lTWFuYWdlci54bWxQSwECLQAUAAYACAAAACEAIVqihCEHAADbHQAA FgAAAAAAAAAAAAAAAADWAgAAdGhlbWUvdGhlbWUvdGhlbWUxLnhtbFBLAQItABQABgAIAAAAIQAN 0ZCftgAAABsBAAAnAAAAAAAAAAAAAAAAACsKAAB0aGVtZS90aGVtZS9fcmVscy90aGVtZU1hbmFn ZXIueG1sLnJlbHNQSwUGAAAAAAUABQBdAQAAJgsAAAAA ------=_NextPart_01DC5365.5C75D260 Content-Location: file:///C:/32CB10EF/file8943_arquivos/colorschememapping.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DC5365.5C75D260 Content-Location: file:///C:/32CB10EF/file8943_arquivos/image001.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAACsAAAArCAMAAAGhhLFkAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAYUExURQAAAKbOObjYYcbff/v89/3+/f7+/v///1mq9GcAAAABdFJOUwBA5thmAAAA CXBIWXMAACHVAAAh1QEEnLSdAAABLklEQVQ4T62TWXLCQAwF7ZDE979x3jb7GKgi/WFJrefBmOIA py7A5To1oBSJyquC8JjOC6VcnapR0bWA7cU7mcfAXue0EG/g5Dqd81sGV6L+0Y5Ur2HTs+1u7nqe n8kt0SgiQESlWb6ERrHn9cCGaIJ3lXan66pV+kPc8XJ7djm9h3ZZRIbVkJtgiAERJm76uGh2eVZT 5Gip0/UUiezwrV1oVa0nW16n+mZdPrHbc8szWNN2j3vz3TaactGWk44DESQmbFRFu0bsSvYz2XZk sScZE3dPciDiq77KlTH5iil74e+Un4p824bp2CkrvCHjE9SsR4D+Jy3CqWLNckrzVrZO/5nth/17 8AjG6JP3S7wgjA5P8QRl30onCSLuSc7E7UmmI4uZbFeyL8SK4/gDk0kKJzVgwKAAAAAASUVORK5C YIJ= ------=_NextPart_01DC5365.5C75D260 Content-Location: file:///C:/32CB10EF/file8943_arquivos/image002.gif Content-Transfer-Encoding: base64 Content-Type: image/gif R0lGODlhEwATAHcAMSH+GlNvZnR3YXJlOiBNaWNyb3NvZnQgT2ZmaWNlACH5BAEAAAAALAAAAAAT ABMAhgAAAJm7M5G3SJvIH5/KK57KKJ3JJZ/KKZvIIZnMRKLVO6jRO6rTO63XPKbOOa7XO6zWO7Hc Pa7YPKXNOaLEO6vVO6POLaHMLqbOOqnROqnSOrLdPaTMNKLMMabNOabPOaXNOKPMMqHLLaDLLaTN NKLMO6vUO6jROqTNNqfPO6TMN7PePqHLLqfPPKPNM6fPOqTNNaXON63XO6DLLKHMMKXNNqLML6PM MajPPqDLK6jSOqLMMKHLL7fXXq/TTa7SS6nQQavRRK7STLLVVLzaa7/ccL/ccbjYYLfXYL7bbrnZ ZLvaaLXgP7XgPrXhPsXff8HddcHddsbfgMriicriiNLmnMnhhsjhhdLnnMvii9TnntzsstXootTn oOHvveLvvuPwwerz0OjyzOr00ejyy+301eXxxubxyObxx/X56fr88/r89Pf67Pr88vb66////wEC AwECAwECAwECAwECAwECAwECAwECAwECAwECAwECAwECAwECAwECAwECAwECAwf/gACCgwAMDQ4N DISLgg8QERITDhMSERAPjAAVTBYXGA6goBlNFYsaGxxTTx2hoR4bGoMfTiAhYFsEIiO7JKAeTh+C JicOKD0+KURFRkY/BSQYJyaCK6AsYVRAb9tvaVUtLi8rAA4S1mJW2ldBQkdqYzAx5jKSDixk6W9F BiEHQ2tIOkyQ0epePigzHICgwYbLAVD0rOHThtBBjRhtsBwYWE5iviQIbAyQ8saHC3MAqjkQUSaL Ni1KlnRxE4XFh3EAhjm4oSUJDi9mzqD50iOHAx3TAMzygGFHLxEsePAQscPBr2CCTnloxfVVLEIV mmTgKopUJkeQJFGyhCnTIEOIBBQxCgQAOw== ------=_NextPart_01DC5365.5C75D260 Content-Location: file:///C:/32CB10EF/file8943_arquivos/header.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="us-ascii"





Catiane Steffen

 

Cadeia de custódia da pr= ova digital no Brasil: O que se precisa, o que se tem e por que pensar em block= chain?

 

    &= nbsp;           &nbs= p;            &= nbsp;           &nbs= p;            &= nbsp;           &nbs= p;            &= nbsp;           &nbs= p;            &= nbsp;  Revista da EMERJ, ISSN: 2236-8957, Rio de Janeir= o, v. 27, e643, p. 1-15, 2025.   &= nbsp;           &nbs= p;           14

 

    &= nbsp;           &nbs= p;            &= nbsp;     Revista da EMERJ, ISSN: 2236-8957, Rio de Janeiro, v. 27, e643, p. 1-15, 2025.        &= nbsp;           &nbs= p;            13

 

 

DOI: 10.70622/2236-8957.2025.643

 

Submissão em: 30/04/2025 | Aprovaç&atil= de;o em: 21/07/2025 e 27/08/2025

Editor: Antonio Aurelio Abi Ramia Duarte

 

        &= nbsp;           &nbs= p;            &= nbsp;           &nbs= p;  Revista da EMERJ, ISSN: 2236-8957, Rio de Janeiro, v. 27, e643, p. 1-15, 2025.         &= nbsp;          <= !--[if supportFields]>P= AGE   \* MERGEFORMAT1=

------=_NextPart_01DC5365.5C75D260 Content-Location: file:///C:/32CB10EF/file8943_arquivos/image003.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAABBoAAAEvCAYAAADrU6LmAAAKN2lDQ1BzUkdCIElFQzYxOTY2LTIu MQAAeJydlndUU9kWh8+9N71QkhCKlNBraFICSA29SJEuKjEJEErAkAAiNkRUcERRkaYIMijggKND kbEiioUBUbHrBBlE1HFwFBuWSWStGd+8ee/Nm98f935rn73P3Wfvfda6AJD8gwXCTFgJgAyhWBTh 58WIjYtnYAcBDPAAA2wA4HCzs0IW+EYCmQJ82IxsmRP4F726DiD5+yrTP4zBAP+flLlZIjEAUJiM 5/L42VwZF8k4PVecJbdPyZi2NE3OMErOIlmCMlaTc/IsW3z2mWUPOfMyhDwZy3PO4mXw5Nwn4405 Er6MkWAZF+cI+LkyviZjg3RJhkDGb+SxGXxONgAoktwu5nNTZGwtY5IoMoIt43kA4EjJX/DSL1jM zxPLD8XOzFouEiSniBkmXFOGjZMTi+HPz03ni8XMMA43jSPiMdiZGVkc4XIAZs/8WRR5bRmyIjvY ODk4MG0tbb4o1H9d/JuS93aWXoR/7hlEH/jD9ld+mQ0AsKZltdn6h21pFQBd6wFQu/2HzWAvAIqy vnUOfXEeunxeUsTiLGcrq9zcXEsBn2spL+jv+p8Of0NffM9Svt3v5WF485M4knQxQ143bmZ6pkTE yM7icPkM5p+H+B8H/nUeFhH8JL6IL5RFRMumTCBMlrVbyBOIBZlChkD4n5r4D8P+pNm5lona+BHQ llgCpSEaQH4eACgqESAJe2Qr0O99C8ZHA/nNi9GZmJ37z4L+fVe4TP7IFiR/jmNHRDK4ElHO7Jr8 WgI0IABFQAPqQBvoAxPABLbAEbgAD+ADAkEoiARxYDHgghSQAUQgFxSAtaAYlIKtYCeoBnWgETSD NnAYdIFj4DQ4By6By2AE3AFSMA6egCnwCsxAEISFyBAVUod0IEPIHLKFWJAb5AMFQxFQHJQIJUNC SAIVQOugUqgcqobqoWboW+godBq6AA1Dt6BRaBL6FXoHIzAJpsFasBFsBbNgTzgIjoQXwcnwMjgf LoK3wJVwA3wQ7oRPw5fgEVgKP4GnEYAQETqiizARFsJGQpF4JAkRIauQEqQCaUDakB6kH7mKSJGn yFsUBkVFMVBMlAvKHxWF4qKWoVahNqOqUQdQnag+1FXUKGoK9RFNRmuizdHO6AB0LDoZnYsuRleg m9Ad6LPoEfQ4+hUGg6FjjDGOGH9MHCYVswKzGbMb0445hRnGjGGmsVisOtYc64oNxXKwYmwxtgp7 EHsSewU7jn2DI+J0cLY4X1w8TogrxFXgWnAncFdwE7gZvBLeEO+MD8Xz8MvxZfhGfA9+CD+OnyEo E4wJroRIQiphLaGS0EY4S7hLeEEkEvWITsRwooC4hlhJPEQ8TxwlviVRSGYkNimBJCFtIe0nnSLd Ir0gk8lGZA9yPFlM3kJuJp8h3ye/UaAqWCoEKPAUVivUKHQqXFF4pohXNFT0VFysmK9YoXhEcUjx qRJeyUiJrcRRWqVUo3RU6YbStDJV2UY5VDlDebNyi/IF5UcULMWI4kPhUYoo+yhnKGNUhKpPZVO5 1HXURupZ6jgNQzOmBdBSaaW0b2iDtCkVioqdSrRKnkqNynEVKR2hG9ED6On0Mvph+nX6O1UtVU9V vuom1TbVK6qv1eaoeajx1UrU2tVG1N6pM9R91NPUt6l3qd/TQGmYaYRr5Grs0Tir8XQObY7LHO6c kjmH59zWhDXNNCM0V2ju0xzQnNbS1vLTytKq0jqj9VSbru2hnaq9Q/uE9qQOVcdNR6CzQ+ekzmOG CsOTkc6oZPQxpnQ1df11Jbr1uoO6M3rGelF6hXrtevf0Cfos/ST9Hfq9+lMGOgYhBgUGrQa3DfGG LMMUw12G/YavjYyNYow2GHUZPTJWMw4wzjduNb5rQjZxN1lm0mByzRRjyjJNM91tetkMNrM3SzGr MRsyh80dzAXmu82HLdAWThZCiwaLG0wS05OZw2xljlrSLYMtCy27LJ9ZGVjFW22z6rf6aG1vnW7d aH3HhmITaFNo02Pzq62ZLde2xvbaXPJc37mr53bPfW5nbse322N3055qH2K/wb7X/oODo4PIoc1h 0tHAMdGx1vEGi8YKY21mnXdCO3k5rXY65vTW2cFZ7HzY+RcXpkuaS4vLo3nG8/jzGueNueq5clzr XaVuDLdEt71uUnddd457g/sDD30PnkeTx4SnqWeq50HPZ17WXiKvDq/XbGf2SvYpb8Tbz7vEe9CH 4hPlU+1z31fPN9m31XfKz95vhd8pf7R/kP82/xsBWgHcgOaAqUDHwJWBfUGkoAVB1UEPgs2CRcE9 IXBIYMj2kLvzDecL53eFgtCA0O2h98KMw5aFfR+OCQ8Lrwl/GGETURDRv4C6YMmClgWvIr0iyyLv RJlESaJ6oxWjE6Kbo1/HeMeUx0hjrWJXxl6K04gTxHXHY+Oj45vipxf6LNy5cDzBPqE44foi40V5 iy4s1licvvj4EsUlnCVHEtGJMYktie85oZwGzvTSgKW1S6e4bO4u7hOeB28Hb5Lvyi/nTyS5JpUn PUp2Td6ePJninlKR8lTAFlQLnqf6p9alvk4LTduf9ik9Jr09A5eRmHFUSBGmCfsytTPzMoezzLOK s6TLnJftXDYlChI1ZUPZi7K7xTTZz9SAxESyXjKa45ZTk/MmNzr3SJ5ynjBvYLnZ8k3LJ/J9879e gVrBXdFboFuwtmB0pefK+lXQqqWrelfrry5aPb7Gb82BtYS1aWt/KLQuLC98uS5mXU+RVtGaorH1 futbixWKRcU3NrhsqNuI2ijYOLhp7qaqTR9LeCUXS61LK0rfb+ZuvviVzVeVX33akrRlsMyhbM9W zFbh1uvb3LcdKFcuzy8f2x6yvXMHY0fJjpc7l+y8UGFXUbeLsEuyS1oZXNldZVC1tep9dUr1SI1X TXutZu2m2te7ebuv7PHY01anVVda926vYO/Ner/6zgajhop9mH05+x42Rjf2f836urlJo6m06cN+ 4X7pgYgDfc2Ozc0tmi1lrXCrpHXyYMLBy994f9Pdxmyrb6e3lx4ChySHHn+b+O31w0GHe4+wjrR9 Z/hdbQe1o6QT6lzeOdWV0iXtjusePhp4tLfHpafje8vv9x/TPVZzXOV42QnCiaITn07mn5w+lXXq 6enk02O9S3rvnIk9c60vvG/wbNDZ8+d8z53p9+w/ed71/LELzheOXmRd7LrkcKlzwH6g4wf7HzoG HQY7hxyHui87Xe4Znjd84or7ldNXva+euxZw7dLI/JHh61HXb95IuCG9ybv56Fb6ree3c27P3Flz F3235J7SvYr7mvcbfjT9sV3qID0+6j068GDBgztj3LEnP2X/9H686CH5YcWEzkTzI9tHxyZ9Jy8/ Xvh4/EnWk5mnxT8r/1z7zOTZd794/DIwFTs1/lz0/NOvm1+ov9j/0u5l73TY9P1XGa9mXpe8UX9z 4C3rbf+7mHcTM7nvse8rP5h+6PkY9PHup4xPn34D94Tz+49wZioAAAAJcEhZcwAALiMAAC4jAXil P3YAACAASURBVHic7L0JnBxHeff/VM+1s5e0uoVly7YkH7KFrL0kMDEYMAESg7ENgZCEEMIfSMhB EiAEiCFvIARCiJMQIIQQwAReMOA4geQfwBeByNpdraSVZMu3LFm39j7m7H6r+qyururpmZ1z9Xw/ H2lmq3u6anqqu6t+9dSv4oZhANI6aJT+3v43lPMZAnqOEDJZBDg6MjLytE5ZTBmuu+66Dcl48kWL OYYMkl144OGxsVPO34M7Bq+FGFwr21fTC2O79+49VM7xw47HMIjxnaGhoby7f+/gIGhwuXRnHU7t 2bvngah5DwwMtGuG8TJCtJ30zyvBgLX0h0nR1yy9As8CMZ6m6Qchl3vo4f37nyp1vJ19fa8ySGxZ 1PyrATGKJx8eGXkwbJ8dO3asScUT/07faopd8ntGhl+02DpYLvR8vZyer1WRP2BAwdCMBVIkZ42Y cYxeN6doket+s9zV3/8CINrfqrbT2/ejDw/v+dV6lglBEARBEARBShFvdAGQ8ujt7b1YI/CN8j5l 9fli9N9gX//UroHBH9Euyr/sGRn5fiWdp1Qi8RoC8NlyP1eKYlvb8+mLKzTQYvfS7/oV6c6x+D/T /98W9diaphH63b9K3+6Qbacn4Ud7hoa+yacRDT5KCLxSnj98jf7/QKl86e91UTIWe38MyFuAkG7v 4N4r4ROSKaC/z2EDjLtyhcKXRkdHz8iOS7TYXfQTK0rlX00MiP0LfQkVGlLxxB/Sl8GwfXbs2LGJ vjxevZKVhp6vL9LzdWn0D9j/xaxXWnfO099lL/1d/lsH+N7Q0NCTtSmpiHYH/a9fWUwCVzHxsd7C DYIgCIIgCIKEgUJDi0F/sM2LPAQbBb+NdlFuG+zre3hXb+/byo0MIEAWWwYZTPDwdd50og9pyoFx uWCgoq+v76awzxBD/z+BtJBzTTucT5TKc+fAwNuTsfin6duuqOW02UrP8cdpp/3DO/sH/5EszP2f 3YcOnXc27rrmmpXQ3lFXkYFBz0fod7bL9a5Sx4kTsg3qKDRceeWVqZ7uZRcv8jAr6b+b6O9yUwzg k0ysM/Tix0pFeCwGFlGjxeDnS+zWSev2ZSBcOwiCIAiCIAjSSFBoaDF00DYru95lQ3aCFn94Z3// 7Q8PD/9X5I8ZsMUdka8eJ4aGhub5hL179x4Z7Oufpm+7A3sbxjXbtm1Ljo2N5aIcXDPI+1RlNgAe pN//IT5tYGAgESPkUtXxDJ0oO8pshJmW+07aKX13lLKFkCYEfg/a2++l7+9zEovt7ZtjizxwRRAj VBww2tt/n0QQVQhoTGj4btXKVYKuri42/aWap4zVpJuIFrtpZ//g93LF/DtVkSeLQdPgw1H2o1+M nU8UGhAEQRAEQZCmAYWGFiNslL3CA3bQjt93acf6RtrRfzjiZ2oR0RDoxLJwcBauTt++JFgGkmxP JLbSd/tKHXhXX18/7RS+TLVdFs1As740psWU1wcxCsrR/cHe/k/Ql8WKDC4LuZwv4kQzjC0sZr7e FEMiGnp7e5cnY/HfiXQgYnaM60as2tcMB/0ZXpeKJ15A69jNu0dGhqt13MEdgzu0OPxClH0NS2i4 p1p5IwiCIAiCIMhiQaGhxaAdmy01OGw6ZpD/u23btmvHxsZmw3bUNC022Nt3ebU7usqpCAYM0Y7p SxSFYVMhSgoNBom9N6S0/7t7ePjHYmKpKSp5Rej/wMDAK2KE/FGpMoHZb4dJ+i8JIVEAtBN5bv/+ /af5NAJazTrOYUxPTyuFhkQs9rtgTcuJQl2Fhjqcr3Wgxe7r7+9/xfDw8O5qHJDE4EMA0eKGSJ3P J4IgCIIgCIKUAoWG1kPdaTLgP+i/73MpCdoLWUH/9dL3r6D/2pSfJbCxI5VmHeSPhGU+uH37JSya IKQMH6f/joUdQ/654oi8XMaQsr9FyHWlDks7f5vjRLtNma1eDEQzmIfWNKWgwzr/e/funRTTLcPJ vr+C8A7iPl2Hjxia8UNnqgjzNtDbOnZqGrwKTP8MWM/tL/HP0O8DXTsVTJegAYsy2Kr4IrvpP7nZ ZpD8kSNHpmUbrrzyyu6e7mW/F/E4jE1sFQ5xqkytoL/X5pAf5EnQ4a/cfTWDzUxqp//WEyBX0dfr IZqA0hUj2r/v3L59Z5RVQ8Kg52ZbjJBbon+CoNCAIAiCIAiCNBUoNLQQ9tx/+XKLwPwb4Ht7Rvb8 s2ybvezgP4DVkZVD4F20k/MxfolHkWI8viVssnveKP7NyMjI2ZBdyiJXLA4lFTMYiEFKGkLGCWGr IEiLTDugQw+PjPyn4qNKQYcoohkGe3t3lej0/XBieupm2mHP8om20eMP2D/6E79nsK/vZgPIB2g+ A7SQAaFht+Un8ZCYLmPXwKB6OgOBH+8e3vP5KMcJY3l392+DfAUMJjjJTBhjMV1n4kfVphqEQYix OUT7Gdo9oj4HplcHmIaMf0CPcWNoPgCrIJn8V/obsuU7C5WWVzPIB1kYhmST6nxuufzyy9ueeuqp TKV5IgiCIAiCIEg1QaGhhRi49tqL6EtatV0DXRnazszqaAfolwZ7+/+bdmJeqthtjabrA/T1Z+o8 QiMqJqspMjD27t37zK7+wbO0zKsDGwlsD1vazxZX3qI8uF78c9UmwyBbQmaHKM6zpjqvJkUw3iWK DIEiWR3U79Gvdc9gX9+bDCAVL1tYSpiKsnJGKeg57kjFEu+R9uMN+HuDwHvNDri4yVp5oi5CAz2H yoiGUufAFt3+g/0b7Bu8XdPgH+n7HvUnyM7BHf1s5Y2/q6SsAwMDV8UIeb1sm27ARzQCX5Jsiq1c uZIJN3sryRNBEARBEARBqg0KDS2EnkqFrjaQN8I7TbQTW9w1MPBJ2hlSd4g1jU1HUAoNhHbAlas3 kBotWUjMDumrJFu6e3t7WUda+r1T8QTzDVAJM/uGRkf/XZ1l6NKW8u9J4ErVZyhTtNMaeWUA+lux 5T7/Ner+Mui5YaPfyukyRlG9ckZUUvH4O+lLUAQCyOaN4pcTJMY6zQGhgRCtLuH+bGWSjrb0RtX2 Ukt28uwZ2XN3f3//oTjR2Aog61T7GRr86cDAwJcqmRoSEs3w5PDe4a8O9vZ9TjZ1yV55AoUGBEEQ BEEQpClAoaGFKBFNMDc6Onqy1DGKAI+EiRXEILJOI0/IlILFj5BLsQwhZUIDmxrBpk8E8qUdzE7a wXyX6pC6Dh+zO/MBIixtKf2ehgGdIVEQXfS462nns+RvVC1KGVpmi9lF/V4bN25Mr1+zVmp8Sc/F 3Sy6ZdfA4FH6Z39ge50MDDvi8UshZGlLvSj/LVUMDw8/0t/f/4txov0PKEQcFsFBr9U307dfLOfY tp/IG2XbDEP/Aot22dU/+CxIftd6nU8EQRAEQRAEiQIKDS0EARLWcXxS1XHmofv0xDS11GAQI/QY BoEtyr60sfgRcilhhpCWT8O3xeSOVPrtIPcNYBwaHh3+riq7Spe2JAQmVJ+h0LNO/lrTtDerpnpU HUNTRp9QpsXVLMpl/Zo17BxLR/YNHT5nvoJxlEgKUa+VEnQtsVkWHuCQN/Jl19nh4eGRnQMDH6Xf 6y9U+xCDMMGgLKEhTrQPgPyenNEJ+TJ7Qy/Oo7JoG1x5AkEQBEEQBGkmUGhoIQwDNitHzCNOW0iQ 2OvC8yDHVdvspS0vUy1taYBeE6FhIZcbSidT8o0EAitP2BEJ71Edz45mUHb2YxALXUJUtbSlYeh7 CdF+I+Sjbxzs62vr7e19q2zVimpjaMZmWSff3rqoaIYrr7wy1dO97H3yQ8OBPXv3/JS9pbkfVRxi 7fbt29cuVuwohaaFGkFOM++SSo576syZO9evWcvq2BrpDgRuYFE1pZaLdaB14tJkLP6ris3fHhoa OmcelqjOJ648gSAIgiAIgjQPKDS0ECV8A0p2HHf19fWDFpN3Dh2KsEe1aWDbto1hS1sWy5jvXg6s M7prYFDluB9YeSIG8MuKfRmPDY8Ofyssv7DOqWppS0Ze1+9JxrQ7ISRUnx73Ftqh7NvZ1/eOkBUv qgIBol6ic5HRJz3d3UxQuUieseGu4mDo+jNEEUHTFo+zznFNhQYIOQeLEVuOHj26sLN/8Bu0469a 1jOeTqTZlJEHohyP1ok/BrYcrQRDL3rnUxEhQlk/MDCwyhEkEARBEARBEKSRoNDQImiaRgZ7+zep toeZ2jFDvPZU6u20w8dCvZWrVtBO9ME9o3sOqrbryWSoGWUMtHfvGhhQr/IgHk8nP2YGe1H2NQwY op06mXiwjvc+YOdpoK//j9QzBoyPM1PM8NzUnVPV0paMvXv3Pke//110r1Ln4GL6W/yAdlS/VTCK 7xkZGTlRYv9KUftpkMpFITNixCDvV2gxM9Nzc3c5fxRon1zaezbLEGNCw48qLUcUwqKADKM8fwYR nRg/jAFRCQ3MVIWZgz5Q6jjXXXfdhrZE8tcVm/c/PDLimrMaOnmGqOeCsPN5f6n8EARBEARBEKTW oNDQIuzYsWM97dh1KHcwyOWD/YO8kVw77Y+sMgCe39GWfiX9e2WpPAwdPhq2XTOMLappEwy66c0h YeqS/fUj0Xc2fRpulZZL19n0CVNoGOzr+wX6cq1sP3ounhoaGfl6qaxCp6iUiNooAvxRDMzlQ1UR FS40jzckSOyVOwcGPkDL9flqejfYS1sqhSlQrZwRgZhOfo12oqUrORhg3HX48OEZ92/DUE2dYNQ8 3D8sCqicFSdkFIvFQzG1lQdocmEsQFsi+X76Ip0bpBuW14UDgeJRVcBMDIUGBEEQBEEQpElAoaFF oD9UqG8A7YF8QDbQGb3bD98sFV1AQAtdxaBcCIk+okwMY0gpclgrT1jTEAzyPtWXJmD8BXPuL10u 9blWLm1pw0LXB3cMvlqLmyP1a0vlRekmQD472Nd3+/bt299ULc8Ce2lLhbFF+astOGiaFh/s6/+A anvR8KZNMNg0k10Dg1P07bLAzqS2QoNdVuXSlgboixIaYrFYqL8DW4Wk1DFYNE4MyNsUm6cXsgs+ YSxvGEdVc5dw5QkEQRAEQRCkWUChoUUgEKtqJ1/g386cP/fW0oUwtpQlXZSgHE+HnK6PJGMaWxEj UABCNNOnYVd//wuAaD8nPYABR+eyma+WysecFgBE3TlVLG3Jw6af9Pf3vygO2ndoaZ9fan8LcmM6 mRql+f/i0NDQ3mifURMzo0/U2ytZbYHRv6Of+V+oIiV+Ojw8fCCQSs+94jxsZQajpaeyVAYzWASF 7wFjsZ4imUym0NGmnIkEYXk7aABseVDpQQwD7hLNJPft23d8sK+fiWWBezeuPIEgCIIgCII0Cyg0 tAjhKwhUelA4qwP82fDe4c9GWRrTALK5iiUo0o7aU1F3tkfGWef4CknBrJUnCFEaXRrE+CTttOVK 5RMrFC6DeEJ5XWhQjNRBpx3uJwYGBl4QA/g0Ldg7IJpCsz5mkB/v6uu7affIyHCUfFSUEKamKllt gYkCA339f6Lew/icNJnAM/R/mdDQPrh9OxMtHiu3LFGIhUybMLdns4syxOzQ9a4Su8yHbdyxY8ea VDzxTtV2owiB88kicnb1Dz5Hz6lEDCPXsCkzdVs+FUEQBEEQBEEUoNDQIhDaya/SoTKGAXcTYvxX kcD3hoaGQjtDDqWWtqyAZ6N0/HlsQ8ig0EBgE+3U74wBeY3io89NTk9/KUoeupbYrPbaA8gZ0Vcq sM/tu2jZvhUzyD/Scpb+DQksBxL79vbt23v3798/ETUvEUMztiiFKaOykfz+Hf1voEe8UnHMsxMz 04qpN8ynQbGKh6axUfiaCA0GaGHC2OzQoUOLmqaiJzsuCasrQIzzYZuT8fgf0Jd26UYDfqI0ZrWW uJRF3XT29vZeDjVa/QVBEARBEARBooJCQ+ug7qQaRg4IydHXZNjykzZthBgX5XX9/pGRkUgiA6PU 0pa0EG8oAoxFPZ5hGAtR93WxDCHfLNsSA8KEBGm/zwDjU0eOHMlGykILmR5CO9OqpS3DGBoaun/j xo3PX7967Yfood8LpUPqL21LJj8IVlh9RYQJU0YFHVHbXPKDIRl+OeQcKw0h7ZUnvlNueaIQZgRJ eSJKFE8oseDSqjyGQZ5Rbdt1zTUrSXvHbyk/TPxeFwLK8xknhJ1PFBoQBEEQBEGQhoJCQwtgLm3Z 1x/ScTR+5+GhoX9k73t7e5cnCLkBtNj7aUfrhfJPkBsTWuwBuu9g1I4zSSbDzSjn5+8bOnQodAR3 0ej6EP1eqq3XKNJP6wBfjJpFaOTIIpaEPHr0KBNWPrirr+979Dt8jb6/qkQ53rFt27aPiHP0I2OA 2qOBlL/ixMCOHa8D9TnWjVz2C6rP6jo5qimG/mtpYEiIsTlkxsqiO+P0yD8ftr1oFIN+FTZGe/vv 08+rpl6cmZieVoov9Ho/qopWsc/n98LKhSAIgiAIgiC1BoWGFmDgmmvY6gVKB3t+9QZbOLhX07Tv D/b1/Rvd+guKj21JxuJsDvibopTBMIzNRD1tYmJ3rUUGYNMatH0xAKkRngrD0D89NDwcOXIjtIO+ iCUhHZj3wtatWwe7OzqZ2PDakF0700lzWdLQlUBkmNNc+vovV20vd1lHW+j6kGo77dyOQyL1rp39 g4rPwwZlWWq48kSYpwjtrC9KaLAjEm4O2WV8dHT0UdkGJgbSa+93lJ804PzyrmV/rjqf9KztUK+s QtAQEkEQBEEQBGk4KDS0AHpb22blOD7FkJjaMSf/gYGBX48ZcJj2PlYrPvpGus9nh4aG/qd0KbSw iIZFd8CjwDwPdg0MHqJvt0fZn3aAz81ns3KDQhUhPgqVTDmQcfjw4Zlt27a9oaOt7cc0wxcpi6IZ /VCB0HDdddeFLm1p6HpZv9fAjh2sQ32dajvt866i/1U6zYP5a7RH9QqJSilPERJh9ZBQ0h3MXyFk yQnjP1SmjIlYjIkMweU+3cLB1bTUV1dSLFziEkEQBEEQBGkGUGhoAbTwueaZoYMHn5NtoJ23c7v6 Bj9AOy7/pD42+XP68pJSZQgPQ1/c6HA5GGAMESCRhAbao/5MOVMPSi5taZCqCSrMCJPm94EYwE9U +9DvqRKIQkmQcOPQnK6X93tpMWU0QxXQtGKRTckYquZBS3qKkPLEFp7BHYPXanH4w7B99CK5S5a+ devWru6Ozt+vNO9SMF+KjRs3pu2pOgiCIAiCIAjSEFBoaAFKrDjxZNhydntGh/9loK+fzQe/Vn5s ePGu/v4bdg8PPxRWhtClLavYAS+JYQzRDuRvRthzYnJm5u/LOXTJpS2NYlUFlZGRkf8d7OsvgrkS YxDDgGIlxyVaaPRJWUtb7uzrexXRYgOVlCMqhhZno/BVFRr0ZDI0CihfxuohPAMDA6ticfJdCIsY ATg4vG/4R7JtXR0dv01fVlSSd0Riq1ev3kpfR2qYB4IgCIIgCIKEgkJDC0A7nFtCVpUM7TCxKRS0 s/gR0GLKEHyDaB+mLzeptmuaFg8LQzegzBHyRWAUtSESpdYacOeRI0emyzl2pUtb7hoY+HrBMP5u eHh4dzn5DV599XJQiAwMeralkSqloB3dEFGovOkfRIt9uJIylINWg3D/0CggA+ZGR0dPlnvM/v7+ jTGi/Qd9G26Mqhc/KFvRYseOHR2pWOIP1B4g1SFmrTyBQgOCIAiCIAjSMFBoaAHCpi1EMbUbGh39 3mBf3xgojOLokV++q7//BbuHh/9Xtn1g27ZLwsLQdVK/iAYjbhykJc7Qt20hu00v5LN/W+6xK1na 8sorr0z1dC97fZyQN+0aGPy/RTA+PjQ0FGmZTyOdfkdYn7NIjOFIBQ8cmISsOBHdT4PWiZfRk/IC dT7wZSDGd6Mdjfw6/e82+WGqLzREiAKKvLQl+42Xd3e/LU40Ns2op8Tu9z48MnKvbEMqHn8nfVFP hzHgw/R87otYrI/Sb9mr2IY+DQiCIAiCIEhDQaGhJVB3mqKY2rGpFTv7+z9GCPmmah8DtD+lL6+S 5lFiactMJlM3oYF24vO7+gf30Z7kLuVOBvz9/v37J8o9dljn1FB00Je1L2Nh6gn7zzfGgPzSroHB n9Bu7FcMYtzLfDLEz1gRIv2/S4j2ZyHFmT5z5sx9ZX0BGxIyml/Oagss0kUdGWHk8ob+oZHhkRNR jrVrYOBiWjKp0FCLlScMAzarooDCTD3ZCht9fX1pwzCeFzOMrYTEbuzpWvYGuul5EbI9li3k3y7b wHwT1q9ZG2aY+cyevcOfoJdqIUI+QK+Bm+kPLRUacOUJBEEQBEEQpNGg0NDk7NixY00qnuhWbTcg mm/A0N69dw/09R+hfa8rZdtpp+yVO3t7Bx7euzcwV77E0pbQ0ZY+TzvXUYoRxjO7h/ZcFmlPYtAy EpXQMFskxmcqKkHI0pZE0UEnMf06M1Cf3xXgBo3ADUwGoh3sQ4ZB9tMyH7fyIBsGe/tfSvcq1XH9 fCWGfqWWtjT0aNEnzLeDEO3Fyh0IfCOqyMDQi+QJTW2asGb79u1r9+/ffzrq8UoRJrbQqnwrra/S iAZ67tydypziMJ3Xizer/C/Wr1rLfEXWKT9twN9GFRnM3YnxOFEXEIUGBEEQBEEQpKGg0NDkJDUt dAWBqKZ2plfDwMAnaO/py8qdtDibj/8ayYbwOenVIXJUhG6QIU25AAZ8bmg4GEUQiZClLZWGl4Qo l30EU4Eg26wRe+LkEYVjE9NTH4u0p0CppS1JRGEqNJqBbs7relliTgEKjydDbjdtcdMQsipCg0YJ E1tqwIRehFeO7B3ZL9toT695X8jnp6bnZ5Urw8gg4d4s6/r6+laPjIycLeeYCIIgCIIgCFItUGho cgyIqY39ALL79u07FvVYOsDXYwB30LeXyrbTDvEvDu4Y3LFndM+oPz1sacvqUE5Ivw76sAZS28b5 hXz205XkX2ppS13ZsYu41GZ0Zo1i4bZyjSwd4hAPFYUKEQQd5tdBiPbykF1+RDux0k61ClZPaec/ CwoRhJAYExqkKzWUS29vb6jYUmUOQyH/uj2jo4+pdujpXPZW+rJBtd0w4IuHDx+eKSvXYvFxiKlv 3wlNY+ezoqk3CIIgCIIgCLJYUGhocogW2sl/mkUqRD2W6W8wMPBJerx/UGVHYsCiGm4Vkmse0UCM 0l4TDnv37j1CO62sI+6bUsI6bJWG31e6tKVRgHfTc3Yn/YleWkm+AmcMvfg62fSVqGix0PoyFWmU 21qFRIlh6H9dbrlYPd01MPg0fXuVYpeqhfvHw1acqBaGkaNXy98Uwfjo0OjovGo3U8Ai5I9DjpSH XKZs49KT588/tX7NWrasrVRxsw02UWhAEARBEARBGgIKDU1O2FzzcpcqZJw5f/7La1auYh3J9dL8 CNxCO0fbnJUTTOPCvv5o3gmLwAA9+tQJyq6BgRFa2hu55GxeL3yq0vyL8fgWtYUA3a5p0vLtGd1z kL68jHka0A7679D3rwXPHDIqhmHAtyG78HsPj42dKvOzAqGiUOlohr6+ftBirwzZ5dDQ3r3/f/nl MoWgx2n9kgsNVTSE1EELXaZ0kZyi3+OubCF/5759+46X2jmmk18DDZSRMvSs3P3wgQORo5IcmH/H roFBlv8lsu0EfRoQBEEQBEGQBoJCQ7NjkHHaa3hAuo0YPyz3cE899VRmZ3//BwnRfk21D+1wv4K+ mELDtm3bVtKXn5abT9nk84fK+wBho/6u0EA7f1/au3fvc5VmH7PEgQekGw2YHRoemgr7/O7h4Yfo y0Pbt2/vSSeTrzYAXkKADNC0K+i/tOQjeXrgMfr7/lcB9LuGh4cfqbTs/qIaszTfBxQbHyz5eU17 Oe2khuxn/EM5S0PyEGL8iP7fpdhctvFlSD46qM5BGdA6VSQE5uh5Y+LPEfo7/YzWseFyTBtBM14Q Vha9QCoWx+hvfQ/9rZ8v30qqdj4RBEEQBEEQpFxQaGhydg/veXe1j/nw8DAzhFSbQnLYUxFuLLlj ncnrxb9KAHzb+VtXRBxEZffQ0D305Z7FlsteVvPr9j9nuUQm1qzSisU2llbUtAlCyAk2lWWx+Yk8 PDT0p4v8/CfoyyeqVBwf9ByzKQJlTxMoF/odvkhfvljrfKJAv/Nv1urY9Hv+Xq2OjSAIgiAIgiCL AYUGpCWxvQaa3lXfHv0/Z/9DEARBEARBEARZ8qDQgCAIgiAIgiAIgiBI1UChAUEQBEEQBEEQBEGQ qoFCA4IgCIIgCIIgCIIgVQOFBgRBEARBEARBEARBqgYKDQiCIAiCIAiCIAiCVA0UGhAEQRAEQRAE QRAEqRooNCAIgiAIgiAIgiAIUjVQaEAQBEEQBEEQBEEQpGqg0IAgCIIgCIIgCIIgSNVAoQFBEARB EARBEARBkKqBQgOCIAiCIAiCIAiCIFUDhQYEQRAEQRAEQRAEQaoGCg0IgiAIgiAIgiAIglQNFBoQ BEEQBEEQBEEQBKkaKDQgCIIgCIIgCIIgCFI1UGhAEARBEARBEARBEKRqoNCAIAiCIAiCIAiCIEjV QKEBQRAEQRAEQRAEQZCqgUIDgiAIgiAIgiAIgiBVA4UGBEEQBEEQBEEQBEGqBgoNCIIgCIIgCIIg CIJUDRQaEARBEARBEARBEASpGig0IAiCIAiCIAiCIAhSNVBoQBAEQRAEQRAEQRCkaqDQgCAIgiAI giAIgiBI1UChAUEQBEEQBEEQBEGQqoFCA4IgCIIgCIIgCIIgVQOFBgRBEARBEARBEARBqgYKDQiC IAiCIAiCIAiCVA0UGhAEQRAEQRAEQRAEqRooNCAIgiAIgiAIgiAIUjVQaEAQZNGcPHmyffXq1dfS t7phGDp7df7xf9P3BSfNSXfes38M9losFvVsNlvI5XL63NycfvbsWf2BBx7Q77jjDr1x3xJBEARB EARBkCig0NDE0A7Xn9GXmxpdDqSlOUUIeV2tM1m7du3NNJ9v1ur4V199Ndxwww3smmB/UzLC1gAA IABJREFU8kJGQfg77F+Uffl9TtPvdGutvlOzMzs7u7qjo+Nb9G1bo8tSB0bpb/1b9cxQ0zRSLBZ/ SN921DNfZGlB74nfpXXpU/XO166//03fdtY7b6Ri2HMtR//N03/n6L8ztP4cpf+eKhQKh9Pp9FGm 9Te2iMiFBq1/P6AvPY0ux2LIZDKvp9fP8UaXoxlBoaG5eQv9d0mjC4G0NP9aj0xoJ+1l9cjHRrP/ MZK1zCibzV6WSqWermUezUpHR8cX6ctLGl2OOnF/vTOkdYtFANXzukGWJn/fiExp/b2Gvry8EXkj 1YM+u81/yWQSisXiBO30PUz/PUjf/yCRSBxodPmQpc309PSKrq6uVzW6HIsk8/3vf//k7bff3uhy NCUoNDQp9CG+md74UWRAFgVtMNzPGhF14KX1yKTe0IYWa0h/sdHlqDe6rr+N1pvXNroc9YJ+3/ti sVhd86T5LclrBqkvtK1wfzqdrnu+tP7eWPdMkVrDRpVfSe/9r4zH439B2w+P039fz+Vy/9zW1nas 0YVDlh7t7e3XNroMVeDw7bffXmx0IZoVFBqaFNrBwUYosmjy+fx9qVSqpnnQhu6lyWRyU00zaRC0 wcWmLl1QQgP9PTfR3/MzjS5HHcmeOXPmZ+vXr69rprRuYUcNWSyPptPpE43ImNZfbKMsfbbQ3/kj tA3xYcMw7ikUCh+nbdO9jS4UsnTQNG0pCA1jjS5AM4NCQ5OCjVCkCjxDGwhP1ToT2vAIhH/rxTnI Z8/SisxmOBDrH31PIMYqt/k3YbMfzPcaEMLvY7+a7yX71JeXfvSjH9UuFBPKu+++O3bbbbd9lb7t anRZ6sju9evXz9czQ/s8v7ieeSJLkvsakSnW3wsOFu51Wzwev9UwjO/kcrk/pm2LJxtdKKT1oe26 bY0uw2Kh18RYnSKHWxIUGpoQ22QpIDQ8sv9OmJl+BgzdAOaJZ/4D8N6b/6xtDFbvvbpPu2wkmO68 amYiWH09sOftgdsntNP9aSRwLOI7rub+4eQBdifS/jyXBwEnzV8uJBo9a18LXT0vFJPrMu9cNrI1 ceY/4dTRuxzzRrNOMo8pt77y781t4O7rvJfty7axymEYVm00wAp3N0Az09zKZf9t2FYOpmhBYnYd tUUMzRI72Ktmp73gxk9DLOaLAFn5wQ9+cAd9HanJyWsybr311j+mL4GKND3+IEye+UEDSlRdVm94 C6Q7t/rS6ji9yOWWW25hdWo5n6YXF+Cx/R8267rrx8bqvPPWvt+D795vvXHe+/bhrhv38/Z73d6J T2MQ+77MIz4vuEeK+zf/Ge+2738eAP+cEPb13fv5Y3AZ+reTYNmABMoG4r7S7dASPG/T+yGeWOFL a8SUHwatv9eBYN5WpPV35Gd/YlYof5vEvndzzwL2z9e+sOtKsE3h//1KtU+cNo6vzaFon7j1kK/H EdonrVJfZLBnIJA4bWOmIRbvMutTIrUGkm0XQVv7ZfRZWNL3l33725PJ5M30fvOJJ5988i82b96c rUPRkaVLIKLh7PEvw8Lso40oS0nWX/Yees2s86UxoaFBxWkJUGhoQmyTpbV8mq7n4NTxH9OHeZ7r nHkNS50XH+h/Ojf+qtm2eb4Hp/30FB/EmvuQFR7mYA4yB47hvpfmwe0nChCKPDRNaFggkVh7ybpA Gq0H99W6A2WLYgGhYX7qgPlbss4+q5vm765Z7y0dgP7urA5b3SJzX10nZt3lP+fsC/Z7axvrQBlW w9UomJsMrnGrO50vu5PmXBMiwYYnwPjZA7B63YD4HZlPw5IXGgqFQj/ttNwhpuezp+D00S+YHeFW J9m2IZDGOmuac5OsEzS/wDUzO3UQ5qaPcKIa1zFjr6IAJ4jLvPDg1HuwrwdebOCPqxtyscF6DV4f snTz+/AdwpBjeMeSCAUh+QXT/OmuiA6l91V2YpuYeKInIDJQ9Pn5+Qe6uuoffCSrv5Pnx2Bm4tFA vfK1VYRtvFjg/P68kKRpwfrha1cA95sG0uTH4AdcwG6PBOqxIo9WqjPlwoT2VHojtHdtg86enZDu vAo8z+UATI2/Y9OmTa/P5/NvTiQS++pXUmSJERAaZif2QI62O5oNdo3Ek4H7MOuzjbW3tzegRK0B Cg1NiMxkaXriMLCV99zOGnAdN8N67wkM9GGqcQ923XkoGtYbezSLPULNAWKwHrDm58HqAFrPF6tR q9mjDYa5s2HvLBzPOZAvDwfD3Ggm251LKw8SyMMqq2F/n6X3MK8FsXgnpNovC6TXwyTMFsV8Kodh 5CA7/4g7CuT8lmbcgf1e5353UzQAkAoTzr4BYQKsGqzbMQvOe3COyTLX7W3EEzH85fTXS8aZU3sD QgNtWDKh4S+reNqajpMnT7avW7fua/Rtwr9Fh5NP37kkRIa29kvptdItJs899thjD2/dulX2kZoh iwKamTxgRdnY9Zy/bsC5Jxue6MYdDawrAMz7t+FeE9Zt2b3G7Pup73q0rxWnI2imOrdwyfVh7wF8 AYhbJMPstPkeDUZwXydv1mHjo+/Effn8gvv6093HD7Gea2H7isd2zmEzP2vau6XRxQe6urrO17ss DNnUzsnzB7wOO1evzL/5dgt3z3faKFZ9tX5/q6pbvxdrDzhCQbB+eM8Q+0/6h9DGsY9BOJFa5yJf rGvG8NofTj22yyHmYZZV8+pSM9eZcjFoAy8z/7T5b/z0vaa4tWzVy2D5mlfS9ytVH9saj8cf1nX9 PZqm/UM9y4u0PplM5uJUKuWL7DP0DORzpxtVpFASqfX0mg8sdHauvb39ZCPK0yqg0NCEyBqhvoc4 Jyr4BAbiCQysY+U0ovwjVkGxwacTONvtBBapwEYgnLBE8zisUUqchy8nFHg5KsUG70sCOC1fWR5O Z7PZG4DNQHsXE4QDJ+lIOp1+rtZ5x2KxgD9DZpaNahXshp1VlSy8GsI3Nq0JDIbdMPV3hMR9+ffu NldU4Bq3jpBlF8AXJcEhNl7PnR6Vfc0XHT9+PL1hw4bW720rWLdu3Sfpy1Vi+vjJ7zZtCGO5sJE6 CT/dunVrrp7lOHz4cPLqq69+kZg+N3XAvW3667l93ThVVRDdCCekWRqwJbqZuwL4rzFfjt5x/UJ1 UGxwPxEqFICbr//+X1oo8ChnXyvd/S7O7SVEbHD25cUTUVRpRhR1tyH+DHv37k3s2LHj58T0yfP7 PXFYMgASGAzh7vlmU8AWCkxxgBOuRKEA7N/WESBY2yF0MASs/OQDLp7Y4Gt/cIMhYh4XymBIIT8B 50/eDeOn74FlK2+Elc97oyyqhpGkv9ln6W/TNzo6+s7e3t58vcuKtCaJRCIQzZBdOCaNQG0GWMSP BJw2UQIUGpoMlcnS1Ph+e7TIa3zyooL73m5tiR0rUWzwVHquU+b2A7kHsW6JDaqRAOfh7AoFziFK jAS4BzELTaR5OGVt5gZgM9DIRqhMFFuYdUQxuy6CN7rqjr7anSOnscnqALjTJsBtjPINRX5fvpEa FBX84pvZeLUFD6dxyD/I2HunXk5NPg3ZzASk2nzTj9vWr19/PX39URVPXdNQLBZfpWnab4np2fkn 4dyJbzaiSDVBNipcj+lFIldcccUgfeng04qFGcjMP+P2j4ICHB+1IIgRhiQaSBLV41xjsmgI6zbr j4Tjnxdldf6d+7oddl5OREGYiBFFKODFBuvw/t9WFakhiirN9ryR1V1d1+9vhD/D85//fFZ/O/m0 Qn4GFuaelg6GiAMgvsEQ7p5vuBXfMCN7fMKVIBSIkQphgyGqaAifGGaLHL72Bw6GmBh6ASbP/hCm xx+CletuhxXrbgHm8yDhN3bs2LHh7Nmzt61evXq23uVEWg96HUuEhqONKEokUu0oNFQCCg1Nhsxk iYUtz8087j7UxMYn38gMhJFzIwx849FR6d0HpxtXC67Y4AoFimkRTjyD7j58/VMvxDzEkQD7iOb3 MRvBkjy8vZb2w3wxKBqhNTcJe/DBB+M33HBDQBTLzI5xvxUfxQC+aQyOL4MXO0t8Xgy82OAIE+6+ MmHCFhVAbNyCF07OR1eoxAYW1XDRRr9+Yvs0LDmhYXZ2dlVHR8eXQOh+GnoOTjz1GXo+lsbS0MwE Ld15TSC9WfwZ5qbH3I6vexsWBDh/1II8UiE43cIT4GRTL9zryhUxvOvVvUeXLRSAT2zwdistFMhE BZ4oQoH9+LEfI4b5ncNEBfH7NFtYPDPrSyTXismFqamph1askI4w1xRaf28U06YnWFvbCEYtSAZA ZO0W56cwfxZbKABHrHbVKr9Q4E6b4QSIsMGQsKkX8mgI8A2GgCQP5zgXQvtEL2bh7HNfNwUHZogn m65JecWqVat+cPbs2Vej2ICUQrbiRG7h2UYUJRKyiAZccaI0KDQ0GbJG6PTkQWCPTK9TxXeyJJ4N IJ8j6TQAHMEhOGfReqAaxGuoySIVwkcC7O3c1AsxUkEcCZDNi+TzcKIhmnW0qZHEE8sh2XaxmKwv LCw80NnZKftI1bj++uv76csyX8b6POQXnrSib9z654ScWp0fnzAmMX705qh79T1gEikRJtwGrRvB YDdowRPfxOgKUWxgnDkVFBooN9F/f1yL89hIOjo6Pk9f1ovpZ49/BXKZms+8qRtt7ZeDFguYNU3e c889e2+//fa6lkU2v90RGsJ8GYJRCxA5UoGP6uGvMUO8HolfqBbFBufYpYUCT0Q2O4R2gmpf7xPe l4gafeCHD713+oxBsYHfNyxSoxmeNYqIteEVK1ZM17ssDFkU29T4Ae6eD4EpnL57sKTd4kQvMByx wRnICBMb7BL50xSDIW77BIJTL8RoCF5scOuxon0C3HGt81PuGW0tWGj70UffB2s2vBWWr3m1bJef W7Vq1T2HDx9+db2npSEthySiobWEBl3Xx+o9WNFqoNDQZMgaoTPjB0I7Z3zUQtgcSX6EQRwJ8B6c aBLZSihMwsY6OzvP1TpvmSiWnTtkhb7a/Ry1n0jzmkSeOSVdYOI6Nvpfj/NaL+gD8tfp/eY2MX1+ eh9MLIGlLHkU18lDt99+e11DNpjXx0UXXfQCMX1+agyIc9GY8EIBCALc4kwiZVMvRJFjKZpE8tMo yp2m0UgUdff+epeDoaq/ppGp754PwbYK+AdAfG0V8N/z3cEQ8MQGp8MvCgVRp0X42jgk3CRSnHoR dTCkmQSqWsKmU5x+9ou0U/gMrN34ToDg6hQvu/rqq/+Jvv5a/UuHtAL2NPGrxfRmnTqhxVKQSAUi y/SJiYlDq1evbkSRWgYUGpoIlcnSDFsqEKyBK6mo4HSk6mUSGTISUDWTSM6E6UKcFxkVxWhXXRqh tFEVMILMzh2wfk0+ZJurf/5wWvdI4FSKappEeoZ4EpNISXSFw8L8OZidfhY6uy/hv5rW3t7OhJVv VePcNZpsNntZMpm8U0zXizNw8um/bUSRaorsOmmEP4Pt9ZHi0wr5cchlj9sd4qDYYAkFgjjAbZeJ Ec6hZCaRfFQPmkQK+/JnQRBVGkVH1/MDafWYGieD1l8mMrTxafncBGTmj0naHGJEpXwApBYmkVEG Q2RTL8RoiDCTSBwMAdO7oZCfgos2vRckvg2/SuvpqKZpn2lE2ZDm5jWvec0WEO4lxcI0rU+TDSpR OKk21h4MXNRP4xSh0qDQ0ETITJZMk7C5p82Hl9OIdEztZCMBvo5crUwiQ6ZFOA9nbySgQpNIzoQJ TSLVyDpQ9WiE2iNbLxTTc3MHPH8FX8h2sAMlM4l0tstMInVXmQjuKxUmuAiGQKfJJ4R4DWF++oQg NIC9zGXLCw32SMJX6NvAWo+nnvmc6Ta+lCBaHNKdweUri8Xi/Q3wZ7hRTFuYsT1NNPBdK0GhwC8O +MxVQR6pgCaRtiDCiQ3W4cNFBVVERb2fN8m2iyCW6BGTsydPnvzphg0b6lsYkEexsWgG3lOHb3N4 0994wcE/ABL4XJ1MIuUCU1Bs8E+9gED75EIfDJmd3APPPflJuGjT++lX9rc76O/xl4VC4SfxeHy4 QcVDmhTaRg1Mm2hqfwY0gqwYFBqaCFkjdHbqoPmwch5YzgPSc9CXjQR4ooJsjiQA+EYY+MZjIIqg QpNI0YQJTSKrTyK1mv5bJyYXZmZmHlq+fLnsI1Vj/fr1TGTwqdF6cRKK+ee4USZ/yDZf//xRDOB3 1ideYzM4R91r0PL7hq5eoYiu8Ps5gFsuVl/PntoLl1/xWvFrv7zKp7Eh3Hrrre+lL4HIqenz98PM xP82oES1Jd1xJe0QBNa+PptKpcZ0T72qF4GO2vz0mDVC695b7WvFMCRCgScO8Pd7pRjh3L6b0CSS Fxtk+8o7/7LOYTShwDm31mPEgFYwiVRMm9jdwKV2JW2UA+a5CfdlUJtEBj7XRCaR9p/C1Avw8sYV s0xmJ4fg1NHPwbpL3y1uStAO5VefeOKJHZs3b842omxIc0L7Oy214kQSl7asGBQamgiZyZKztrov 1NDR2Z1OlnQkQOLnAEIYOfiP6wgO/JxF90FcQ5NI1UgAmkSGo5g2sXf58uVTtc6bPiQC0yZy82P2 Nr6ueo1N9vP461/zmkSeO7Offo7uSXwj3pdls9lNtIP6ZA1PbU3J5/O98Xj8o4H03Blzzu1SpL0r 0J5hPKDz82XqwPj4eHdPT0+/mL4we9B85Zcvdq8Vc0u4L0NJMcKXG/GOYUcc8YY89TSJdG/Yhnpf 9TSNaPt6tKZJpGzaRCOm/DDOnz/ftWLFigExfW5yTL2aBPD3fGhdk0jJihRuPY4wGGLmucTbJ1Pn fmyO+vasuVncdPXll1/+fvr6Zw0oFtK8BBqwzSw04IoTlYNCQ5OgMlmam5aHJYJjYldFk0hncE8+ EqA2iZRNi1DNi3QfxFw0RNhIgNPQ4BvdfB4X4rxIB4XQcF+dsg8IDfn5Mbeu+ke4wqcxyEwiZcaP zu/uReUIHSxNLkyY+4I6usLv52B10gqFBZg4/yisWOUPuU8kEiyqoSWFBvse8zX6Vhje1+HU03ea y+guRdq7m6OztmzZMhZF4nvmFnJnoJg/7b9u3Ogc8AQBMRLI6b9UwSSSj+pxrjHRJFKcelEvk0j+ GCqTyEqEglYwiWT5pyUiWSOWZGUsX76c1d8En5bPnoF87rRVFVVCAXfPt9oYaBK5VDl77CvQ3rkV Uu2bfOn0+38gk8l8ua2t7ViDioY0Hy0V0SATGgqFwlgyGYiWRATi55+8/Y8aXQgEoGfZqzcDvNUX is7mSucWjsvDEu0HNXvS6VxjkFGpSaRqHq7vQQxBk8iwaRGWKOIXG1yhAED6cHbz5RoJvAmTLA++ gbLUH+YOsrDa+fGvrsxM/ntNr+lYYk26e8PfD4gdtfzCmK+uOh0aVyizfz+vpe8JXL46DkKoN/gb mwHjx6irV4AnMLgjxk7jNiCEAJw7PRoQGvT8s789cfyPumpwWmvOmvV3vBbgooBZwfjJe2B+5nAj ilRzNC0F6Y4rAunzZz5+WXZuX12ffV3rP3yzlvaLHplZb7UJJ/rGvG683pR7rYhiA69F8AJcmBgB 9qHKNYkURYxmMoksJz/fOXROaZOaRLKGbSzuv9UYRiE3c/yt1+vFzK7a5Syna/2HflFLb/elicuy 8oKXLGpSvk0UI4KfA+CnCoHUJNJZShVNIhuHYRTh5NN/A5du/QwI5pBtMXj2O+ef/JOW9zhCFg+9 ryW6L/7SFrENyZZObUbYMvKxuN/Sitb1wtyJt7xmppj/xQYVq2kheu4bK7bc666PHqc/9KcaWSDE QosvC6TNOw9x4BqDklEDtxEZMhLgj1qov0lkcCSg+iaRF5IJU7LtefTmt1JILUBu5odvr/VIbTx1 KYh56IVToBfPWZ4bnIQEvvoFUpPIgDABXocHhGPxXgx8wxOEfUNXrwiJruCFkLOnR+CKa97s+55a fOU2TdM+JS6J2ewkaAc3kQ6Ojmbnn4azJ76xZBvA6c6rxAYvGMVxyM3vf1+9Ixq0WMB7EzJzB9x7 ll9pteuhpYhFMomUrUghEyPEaRF8pMJSNYn0ZccLIgqxQbZv2DSNWlSldsm0iWLmUNLQs59oRLiu rP6a/iKCMbVsgENsc4SZRCo/JxgDm5/kTCJ9UTKCUOAIENJpEeYFVEWTyAt8xazswnEYP30vrFh3 qy89nrp8IJ5YM1AsnG1QyZBmQYuvDrQhWXRfs0ZVyqIZ9PyzcUMv/CVOnQhSNBK76YsnNDSwLAhH oi3YCViYORB4iIeFF4IzchtiEhk2RxLcz3qhsXzDyjQnc0cC7AdvDUwiVSMB9hHRJBLk0QyFzOP0 d6m931K8LZh3fuGga2gnM34kbr0Ft7HZ7CaR0xOPQrGwALF42v2eROuEWPJyKGRbZ/aEFuuEjtW/ FUg3jBwcf+Kv6cM9b6csvWtGNm2C1dV6o8W6aL0JNlYyc4e4cx4UG5x7pn2LhMWaRMqmRfCRCvzS rxeaSSS/IkXp/LzvU6uw+PbuYJsgn6l/3WWwe0gseWkgfX6Gj2jwPKRUq2A5bQ5vgKMyk0jfihS2 UGCHxvhWpPAoPS1C1j4Rj+G2ccDOV2YSiStmwfjJ78Dy1TeZ9z2PGKSW/QLMn/+XRhULaRJiyUsC adkWW3GimGve8jYbKDQ0AURLQyy1KZDuf4iXDi+stkkkLzY4o2B+ld7q8IsmkaHTIuyHc5hJZKmR ADdMEi5ck0jZaFehTo1Q2cg4mzbBcMQGdsrF+dx+0cwTGJx9ZcIEOPVOZvxoftDrCMlMImXChLOv aglOpyGsG0U4f/YArFm/U/j+z28poaF95duBxFYE0k8/+zVYmD9mnQKhM7VUkPmY1Os64Ym3sRkr 4gjOc6DnJ9ypE75OvC20mlWXBE0izXukVCgAQYCrwCRSWPpVZhIpm3phlkIQG5xjR+m4uyKyUwEN 9b7qaRrR9vUozyQymJ93jGqKDYTEIN15TSC90ACRjCGrv/nsCSgWxqUeUrogeAWEAuDrTakVK4S2 ShVMIsOmRTiRCvw90an3gUiFRZpELqV7LU+xOA/jp/4dVl30y770ZOcNsDD+dXo+84pPIhcCscTF gbSmFhokEQ0oNEQHhYYmIN52FTC1l8cyCTujFhUUIwG8SaRquaioJpHiPNyoJpFh0yLceZGCCZP7 PqJJpMyEic/DcbheqiZMMif9ejRCtXgPaAlx/XYDcnNjlsjEIgNIRONHEEO2g8KE9zmh08Q3NkXj x3JXr5BEVzjvz50ZDQgN8TTtvE5+r7YnukqkaMMu0RHwmIXZqf1w9sS93nxkAPd6XioCXSzWDm0d QQG3sHCo7mWJy6at0GuGcNMiRCGNj74RTSJ95nMmnFAQEOCqbxKpmnoR1SRSJRSgSaQFq7carb++ 0uvztHH79OIPXgFxRcSlMwBQOvpAbhLJr0gRaKuAbCqGP4ozzCSSFxt4oSCqSaSvjaOIhpBNvVC1 Ty60wZDJs/8JK9ffRu9xKTeNRQQmOgYhN/vTBpYMaTQtF9GQvjSQVswdrX9BWhQUGpoA2bQJZhJm zXcvNddRbRIJJUYClMZLRBiZqIVJpMSEyRUKAKQPZzdfrpEQZhK5VE2YUu2XBoxpwMhBIft4zfOW 1dVC9igUCzN2YIrVKDNPtWJqgr9hCiCOovJ1sdEmkeNnRgPfN5660mw81WOaymKIxVdDetVvBNKL hVk49vidgQ6Sd+EtDYEu3cVGhP3u/HrhNDRijrDsusnNH3Rvb/y0CDFSoVKTSFGACxMjwD5UvUwi PdQmkbzYELavmO7sWyr6QEx3z5FzShtoEikVkjOHwTB0yd61RxbFtmC3UVRRCwx+JaBKTSLDluQG uz46YgNvEgngTItRm0R6VGYSGT71wq7HIYMhS7F94sCeMzMTP4XulS/1pSc7XohCwwWOXGhozo47 W+I8mRYH1zCioRxQaGgCZKNdmdmD7ihW2FzHxZpEhokYsoZDmNjgdhi5Dos4LaISk0jZSMCFbBLZ IQ0Hf5R+70LN8zZH8wVy82Ne6DHYzSlCPGNIYWqCBV+/5NMYmsEkcm72KGQz45Bq46YekATEU1dB fmF/dU5qDWDXR/vq36av7YFtx5/8HOSy57l9uYb3EhIbpNMmGuHPYEYBXSSksiigQ9JpEe59z4Sv 5/bfhnexLdYkUjYtQoxUEJd+rZdJJL8ihTs4HUEoKEtU4L+B7DpokElkI6fGiWix5dIotiyrv1qE qAXJAId0aW1SuUkkfx83PxnRJFKMdii1YpaFX6BQTb1w2x8hgyHiOWrVe62KqXP3BYSGRHo7/V2S YOi5BpUKaSSa1iGZyqlDLvOcdP9Gk0itp9elfwlLQ58GvTjZoBK1Hig0NBiVyVJ2fsydCxs219E8 BoSHF4JKVOCOG8UkstSKFNZIgP205EwiZdMixIdzmElkqZEA9yDmFyDSPJyyLgWxQWYEWS+TMFkI LQsBZ7jBC/aIktvYIhGMHyXTGGTChLkv+MUGp4PljvbKjB9DhAlnX9USnONnR2H9xS/zfedEeltT Cw2pZTfb86r9jJ95AMZP/8SKOtFA2kFyLzuh89ZqNPI64Ym3SebaZ4/S8z3jinH8tAinsx4mNjj3 TOe3kk29cG/DAQGuPJNIUYCLPPXCkUw4kVglKsiFAvDu64LY4G3kcpd2/uX5RREK3OugziaRREtA uvPqQHojTEwZ8XSw/uYzR2lDe9pXV0oubSkIXrKoyTCTSFm0pdgeqoVJpDgYEnXqhS/NuX4ukMEQ h4XZR6BYmIIYv6oa7bTF266G/HzzPj+R2qElg/4MucwJ2ndoTt8ONIJcPCg0NBi5SdgJ0AsT3IOv nLmO8gc8KB7wXoestEmkbEUKZzQgzCTSJxSA2/wsMRJgBKIhwkwi7U+EmkSCu9fiRpsaCQvjapRJ WCyxDrT4KiG1CLm5w9Zv7vwWTofJDj0lYI2wy6YmOA0rmUlk6OoVAP5OE19vJcYgsFWUAAAgAElE QVSPfMM0IEzIVq/goivOnwkKDfF0cMSxWYgnN0K6542B9Fz2LBx7/Au2/seLcjwSc7wqhYPXEza1 SGbg1Ah/Brl5qhWx5hPg3PoIvmkRbn1139tVl4uGCJt64akRwfu9VIzwlZRwx+AFOAhMzVBNvTBL IYgNzrGjdNyd+7pbAQ31vsqOYBn5OZ9plElkuuMKc8TXl4M+3bDGrWzaT3buoHRQo+TSloswiSwV bclP02A4YoPTtvAiVdT1I8wkUrYihdP+8bVx2HY0iTRhU33mpkahe+VLfOmJtm0oNFygxCRCQ7NO m2CgEeTiQaGhwchGiHN2NIPKX6H0XEe5SSRrluqKBzwQf9RCvU0i7T+hliaR5l+Gf+pFqz3QU+2X B03CDGYS9lTN85ZOm1h4HArFBXuaj9igA280iLSuSeTEuX2B782WKmTryrNRvWaCkAR0rPldCN7a DXj6kb+BfH7OvaT8opy8g+StAtpaAp01x91fUD1/vCHhjrJ7fH5+zNcZdwQ43RHsamESGRDg1GJE aKRCg0winbn2vkdDoNPoUJ5JZCmhwL0ObLEhbF8x3TmHUa8b+ZSf+gtkDrKpnTlzOWP720WMWnDa HLIBDvMwEU0iZdGW7uckK1J4+l1QbHCEgnIiFcJMImVTL0STyAttxaz56f0BoSGW2tKYwiANR+bP kGtqI0gUGhYLCg0NRjba5ZiEMSoaNVA84KOYRIaJGGLYIppE1p+Obsnc3YVHoB4mYSrTUobrwg1e g87puzijQRppTZPIbPY8zM08Cx1d/AOSmMJLs5lapVf8MmiSpaNOPXsPTE8csP9SiXLyDhJ/7baK QCedNtGA0PNYYjVo8TVCqg6F7CPmO74z7opq4J8WIUYqeKIauNcN15vyRUNY8EIBBAS4MDHCKSMf qeBfpcW5t9feJFK2IoVqX1nn39m3lKggpjvniF+RQmUSGWWaRimaZcoPgxnKavG1QqoO+fnD7m/K TozY5giNWpAMcIhtDv8Ah9geiRbFya9IUVWTSGEwpFyTyAttxayFuSOBtHjqMvv7GZJPIEuZWKLV VpxAoWGxoNDQQFQmS/n5g+7ob7lzHQH889traRLp5GeWOkRscDuM7u72djSJLBvpaFcdGqHsvEpN S2cOBBtYdoPOF3oMdmPLERu4qQlRTSJlwoRX38H3eee9Y6YqGj+K+8pMIl1hgv49fm5UEBosn4Zm EhqYaJnqfnUgfWH2GTj25NeUI8m8KMfj6why124rNIClglxD/BmC10wx+yQ9jRlOKICgqEb4+uiP VBBFNQv7s97F5ooNwSkNsCiTyGAkBqBJpIssv+hig6alzKkTIo0wMWXI/BkKmafol5l3fwPNuY/r njF1pKiFEJPI4AAHuJ9z9pVFW4rtIalJpO/ZVIFJpGQwxMIvUIhTL8oxiWzlwRCRXOYk6MU52t7t 8BJJmynAFvOnG1cwpCG00tQJLdYGiZQotBq03h5rSHlaFRQaGojsIW4qZcasOyBVnbmO8sgIUIkK 3HHLWelCbDz6RwIMZ/jOLzY4rV4ipEFwJOBCN4kkWlxqElYXf4bkRpp/ly/NMLKQCYxW8CKS5frt Bi/YAoTTQQAizFEXxAYGP40hVJgAryq5nSbiv07KNYnkG6kTZ0fh4ste6/um8bbm8WlgjbiO1e8G sZPEViJ5/NBf0e8gGi0Z/n0DopydzHWQ3MtO6Ew1G/HkCto4eJ6QapjLA9a9LFJ/BisMnviiDsDt jPtWXnHrI7ddcp04fzv3zLCpF85tOCjAhYgRzu27TiaR4UKBc0jvXhJVKCg3+iD0OqjQJNIpn+za SXfR+zvxN8uM4jht2J4M7lwHpNN+bH8R2eADlBu1AOEDJ2EmkWHRlk55dOGeb7jtDf7ZhCaRtSa7 cIy2Xa7ypWmJ56HQcIHBVmAiWqcvja0+ks+ealCJwkml2eCS/8JjS2Q3+9LmzQYKDQ0kIZnznl8Y 4xp05Tgt18YkMmylCzSJrC+WSVjKl8ZMwgq52qvBsgZnZvYReu4L0kaa87vyrt/ucGkLmkROT4zR 5CLdJ+Z+S2aMGUusb1gngKd95W9KlowCePbxr8Ds9DPmd3N+J2VnixPleLHBwhsFNKfDCJ2pZkIW 9VPMPQN6cbbuZZFNN8otjLnvRbHB6Yz7Vl5x6yNIIxW89/auXDREmEmkGIlQUozwfQu73OaF7tx4 7eQqmET6clJ13DmxAeyPRxEKPOQiRimhIHAdmOehOiaRsmUtG7XaBEM2tbOQ8XtIifdmPlIyctQC lDNwEt0kMuDFA/ZvYF5LwrNJUj9k0yJKDYaYYpTd/vG1cdh2iUnkUhoMUZHPnggKDQFjaWSpI5s2 kcscg2adQoPTJqoDCg0NRLrsWeaQrwNUjtNyLUwiw0QMc+CshElkcCSg+iaR0qkX7geXjkmk3CSs PqO0MlFsYeaA1zYTGlhOKKgnItk7Ov0q3RMbWsEkslhcgOnJI7Csx79kJPNpaLTQkOy8HhId1wfS p8b3w3NH7wl2zELEBkeU41ekEPeVrUjh7NcMyH1MGuDPkLwISKzHn2gUILfwqNWxJ85584Qyw+2D CKKa4Zz0YKSCX1RzOkXVMYksZ1pEvU0iAbz6qjKJVAkF5UYfePt6x5CtSKHa15+f/3fgrxvLxNRP I6b8MJiIGhQvC1DIPuaWORCZYN+bzZSI0z3DVsFS5VEvk0i5+BUUG8TBkHJMIp1clsJgiIp87lwg TYutbEBJkEbSStMmGCg0VAcUGhqEymQpN886jsSeAlDZQ7SSNajLMYlcvW4npNvXWyV2G4n+BqMo UJojqk7HxUlw0rl93Fd3X39DzJvjD/7PE2G78njcfr7j8uUkvn2bha4Vwc5kPUzC2Cg+W/daZG56 f6CDqmxggdegc/o2/IoU5rmWmEQGjB95k0iJMEEIX9/9nSYzC/sa8nWE7O/jN9rz6r6z7+S5vQGh IZF+PmSn/7uap7sstPhKM5pBpFiYgyNjn6HfR5dHLYSM7La6SaSss9YIMz2ZkJzPPAZ6IWdFYoEV yePcb/z1WCKqAV8fPQEiKKo5vxXxelMhUy9sLcInwK3dcLObi2F4n/BHIDj3ek7CcN7zzwD78wb3 nm3kjykb0PLdv31pwc6W7zkC3hvC7SQ+R9x9lfmE7OvLg08LPtdAeC87vvNMbOvYBCKNimiQTfsp ZB4HvZjxiWOqwQfeJDJS1ELIdAt5Hv5BFUKS8LyNrwq0Q9z6Znh1UOfqm/O7StsnAIF6qGyfEPtv 4XhWpc/TshbovwwUclNQyE9ALnPKjggsbRLpfJ9mHwxRUSwEV2civGcDckEgW3ECjSCXPig0NAi5 ydKT9CE+7zaQCAlT9IOiQnlzHYOigtPxK2USedW2d0FbuyiSII2gLv4MbCkq0uZL04szkFt42qx7 VueeayhJwk0rNYkMGD/y/gpRVq9wS+x1sGTGj84oWdjqFZPn98HGLb/iOw+sM0lor7Eeq36IsHPW sfq3aac12GB7/NA/0Af4Wfsv/6gcLwqFjey2oklkMrUW4klxlYcivbc+WveyyFcUsldp8VwezZPt dmZ99Rg8Uc2uzBWbRIZMvfBWk7B26ei4BC7Z8v9V92QgFaEXaGe0EBwNrgeJNslyxvNjvkiNUp4J jkkklBO1UKFJZM+qa2DLNe+oz8mpAmwqXmb+OEyND8P4mYcgM/d04L7rRAa2ukmkXpgLpBGtXbIn spSRRjTMN2/HPYlCQ1VAoaFByOa8s7Wp3ankduic01ELm7IQEBXCRg2gdGQEcKKCOIcy1b4WRYYm wTIJO1HzfGQdpvmZg1B0HOjNOsI1+kBurmW1mliy3yTSV9/NjzWnSeTs9GNQLCxALJ52vxXr5MeS l0Mh+8QiznBlpLp/QXofOXPyQTj13AOBaCFeSBBFIXEfF3tE3Wn0SvflxAbnQ41qAMuWBmSrPBj6 Ql3LYa7SIoloyMyNWVEIznlnvgrEE36cz/rEAvM0W/XcFdXcusttl1wnzt/WroZ06oV/NQmAzuXN Y3J6oVOwjUMbQTy9NZCWmz/ERZ/YAjEpPagRxSRSZlgtDpyoV8Ei0LPqutqflCrCIgXTHRvNf+su vg3GzzwIx5/4JygUprz7LvGbRMp8qFpBbGCmxCIEYpI9kaUKu0/EJEtvZ+aPNqVoFk/00Lae3wAd jJwp/iLlgUJDg5B13rJzB90His+h345uqMxpubomkSta7GG+lMln6tMIjUtGtuamDnh11UyxxAY+ jFQaou/MO+WMuGQrUjSjSSQbgZqaOAArVu/0nQs2faLeQgMbGUj3vCmQns2cg8fGPisRAUKiFqyt 3FFKLRMLvn0BvOkwYh71RuZj0ohpE8z0SrZKS37hicB5d/SCMLHB2kcQ1RSRCt4nKjOJ7O5BoaFZ aETdZcTNVYa6/Ym0kZ2dt1YZ0rxE83+nvvoMpMF/b66GSWTYKlg9K7fX9JzUmhVrXgwd3VfA4wfu MKdVuM9QziQyzIeqmfEmKPJokjRkqWJOFSdJX1qxOAu57PmmFM1S7ZJohvzxhkSvtjooNDQAqcmS UaAP8UfNkFrNMT70OfRX7rSsXFoqJDJCZRLZs6q1H+ZLiXpMm2CrXMTbtgTSZ6f2W+HfokmnOBpu dzqt+aXWPlanVGISKaxIITOJlBk/AnjeC6IwYRhiffeuDaeDJRo/8iaRojAxdX40IDTE07RjNvnd ap3ykhCSgI41v0ffJALbDo9+hj64Z91RMFFssFD/TrwXQyuaRMoNUxvgzyCdNvGIOU/bhT/vYFd/ WLxJZGBahMQkUjb1wspTg85lwXOINIZG1F2GbGpn1q6/VtPEulc6xr/OFDqxLcKQmUSWtbSlZOBE zCMZ74DO7s11ODO1JdW2HjZf+6fw6N4/pN9twb3vtrpJpCZ0MBkGiEsuI0sZ1bQJx0vF7Pc0UT1G f4bqEac/7fFGF+JCI5HuZQvJLufTcgssLDtjd3y8eXjO6K9rmkfUowaMqCaRUSMjNHvUzHmoL1sR HO3KzT28YOhTxZqeNCRAfuHAjMEmoNeQZNu2Nnqb8K1DVcidh+zCCethEFiuy+vcW395I7XVMImU GT86nSi+QSuKaP767h/BlRk/ep4kfmGCreQgEm9jy462ndD1TF2k7vYVv7I8lrikU0w/9tQ9MH52 1PrDdWqURRxY6UvNJDKV3gCxhLDKA3PJzzz+nCE0zWtNPH0du2Z8xiaZWWHaBIM/7/aPVA+TSNXU i7b2yyAWF9c5zxq5uQeDk6yRmmLoc3qxOBV00asDsvprRVxynQLhnu6IDW4UWYhJJIRELQQiIyJM t1i24low1VUOvTit5+d3z9fplIXAxNkEm0xFiNahkVi3psVWxLR4j3TuQFv7Bnje5W+BY49/XnHf bT2TSBJrC6QZtILT4k40oDhIA4ilNrEQKV+Y1MLcUfe+oevNVY/lQsOpKVq0mQYUp6Wg96Ys/3d8 5eXfDspMSE2hF9a36Mvr+TTWCJXNVXQallab0HmQq0cNqmkSya9IwZ75HV0XQzIlLncFmbOTG1Zu 2LCrvpOgEWjr/vma50Hr0Cfpy3v5NDOaQRwt55br4huaMj+AwLKnZqtJWJ8euPrOMiX+sPFGmURm 5o+ZoX7JFL80Vxy6L/6Xt8Visf+qwU/go1gsvkTTtB+L6bMzR+GxQ18Gg+vBet9MFnHgpYtRC1FM InmxwUHl21CvhkN7lyzkP35/z2V3vbS2Oft58MEH4zdctp05+PmFBrujpoNfbPCd93JNIp1OHOHr buUmkTJ/BqKl/ovea15djXODlEd6+a11z/Puu++O3XbbdedBJpTZ93VxMIQ3/nVMImVtEed+HMUk Ujn1kxs4cbYtWxmc0qnFur9E623TuppOT0+v6OzsvJ2erz+nf67mt61Z/0o489wP6PPmWe5xFjSJ 9J633u/RDJ00kXh8WSAt1fniO9u6XvLBBhQHaQD0HvBN+vJLfBrzZ+Dbh81Uj2VCQ2r5G17fvvJN P2xAcVoanDpRZ2gngbDOgpi+MHvQ7YDxRj8MHYTRX0Lc/aKYREZaWgrCIyPYA275Cum0id0bNmxA kWHp8jIxYZb5MzjTJvjRcuDqKnHqsdwkkm+Y8tOEmEkkvyJFM5pETo2Pwur1L/edE3pds4SaCg1T U1PLu7u7vwLC5FZmtDU29EkoFHLmefeJA+AXG1z9xfu0/VqeSaTY6JXuy4kNfB61QmYESctyH6lz a+X666/voy++lrWhz0Nu/inrPGn+a0F63l0jhRImkaKopohUADsvUWxwrlln6kXnsqDQ0IhziDSO W265pRck9Te78KQtKsgHQ7i9XbFBaljNicPsHqtHjFpQrYLF8ljWI73272/mekvv5eP05R9zudxD iURiN/DnnGhwyea3w5H9H/L7MjgRe7ZfDr8iBf971PpeWy7xRGCAiv0+Z5r590GqTmA+IYtoAMNp i/Htw8bWYzaFMJmWTPXIZsfa23G1lHJBoaHO0IrKnog+9dowcpCZs0yW+FBEfu4dgH/013xPoplE hs11ZERdPnOZRGjARujSZWZmZmVnZ2dgqGhm8oDVXQkRB+plEikzfgS7HDpEECbYO+Kfz+5cJzKT SHYdTI/vDwgNlEBCtaEN07+jL4GFqB879BWYmnxS7ZPgKEH89+f6nKqoBeeh79G8JpGsXO1dwXnl uq7fr2n1NR2j+d0opmVmD9GyFKVRC8rzHmFFCksoEEQ1SaSCKDY4o6CGHQ1hXhskBu3dwZUGGnEO kcZBf+tABFBm9jDoxaJ1HxQ6Agx+MMRCviIFCPdjfkUKK+/yTSK12DJId14qFtnIZDL3t0KnIJlM PkqvsY/Rc/VJPr27Zzuk2p5nTlP0piaC9wxtIZPIRNu6QBr9LY82oChIAzh8+HDy6quvvkJMX5i1 Ixr40Spf+7Ax9TiRWg8k6IF1lt5PcMmJCkChoc7EYjHJQ/wR+hC3TJacB4onONgNdsObFykziQwb NYhiElkqMiIWYw++4KgBfUDeh43QpQm9qb4EhNHz7MJxyGXOWR0ep/8SIg54I9rck4J7mFj12trH etaUZxIpM370pgx5DVpHmJCuXmFA6HXCm0SybTOTQZ8GyvPn5ubWdnR0nK7GuReh19kb6Dn/FTF9 /NwYPP3Y3UJovMQnwU5YqiaRqfRltMPRJSbPHjhwYE9vb2/1MooA/c6Be/yCPTXOd/44IUF53sGJ QKmtSSQ7dlvHZpqWBoHxj33sY6N33HFHtU8T0qTI6u/8jFV/nQgYT1SQD4ZonLAZxSTSEavLWtrS FoSXrdgGvuvH4nArdQoeffTRO2lH7K307dV8+rIVO+D08RPgLDEMwn23VUwik20XBdLoM+3JWAyX uLwQ2LJly1X0xddzz+fGIZ+fteqm268BnwBvUf96LFtxgjJWn9yXHig01Bn60A2Mds3PHPD6Y9xc dwZvkBJmEhk2asBYrEmkZRLWHA15pD5omhaYNjEz4dRVYcQa1OKATGxwG0quCRC4805Fk0he0GgG k8hCfsIM+WPrn3OQdDrNGujfqN4vYLGwsHBRW1vb58T0Qn4e9u35pNs4NwvBd+ZdIcHfueXFBn/E gbAvgFJscDY6Yf/+Rq/8eLU0iZRNm6D8hN6b6mpt/sQTT6Q2bdp0vZhudtTYG/H8gTNLIsSc0/6R ophE+kQ14OuuJ0CoTCI7uqVT4x684447cD2vCwR75DFQfxdmxuRRa84AiDAYIjOJdKPIKjSJlBlW s3rcJZnuQ7m/RqeoJmzdujVHO9530fP0MT69jT5j3HuC6INk2AKkQmxwfo9Gm+vFE93030oxOX/0 6NHHNm9u/ZVCkNLEYjHptAnfM9GNavUL8I2oxzJ/BkChoWJQaKgjlsnSbS8W0+enx+TGj3aHSzRI ke3Lr0hRyiSyrKWl7N5KV4+0Efo/9W7II3UlMLI1PWkta8mHdAc8FWTigCNF2A1LcV662DDlpwmJ gkYzmETOTOwThQZWppugykKD7enyZfo2MMn14OhnYW72jO3LoPBU4MQG93txK1KUYxLJC0XiVAjZ ihQeXN4S8aMaDQfZspaNmKN96aWXsrVPffHaxcIUZOefsb4vSKaSgD9qQTzvbkQKF1qqMokMiGok aBJpinmCqMZo7w4uydns89yR6nLFFVew+tvBpxUL07Aw/7QbUSNGrYUNhogmkb7pbZJBDbOTAdY9 XTXdU2zjyAxMWaRlq42W03NxRLzWUqlVvtu3r23oPs48vxxfZCAJth0bcSm3d++QJT+yefPmrGwD svSg9TooNMw+4z3X7Eru1l3wC/D1rscyoYFen2P4LKwMFBrqiMxkSS/OQ2buCe9v8I/o8qGIYfMi nc5XFJNI1VxH6dJSYD34u5Y3R0MeqQ8LCwsb2trarvSn6jA9ccBdGULsHPkaoDJxAGpvEikzfmQ4 /gqiMCHuKzOJdLbzJpEzk/tgzYbXiqet6j4NhULhd+nLTWL6iWM/gWef/lFAsInsk+B+s9Y3iSTM W0Duz1D3aV2yqXELMwdLTyWxf6RQk8iQFSl8MdMGQEBUc+sugG8E1MlLi0Nb51WB71MsFnFq3AWE zJ9hfuagr0NrigiuOmaqWaGDIR6lTSJd0SzEJJIXKthIeSodCMvX5+bmHuzu7hbTmxp6TgJLzSfb Vln3CC5SwZETWsUksqvnBbLkB+pbCqTBBISGudmjdiQTsQejIBDVGmhj1qkey4QG2p4Yw2dhZaDQ UEfkD3FmEqb7BAQAYURXGPH1h6HLTSL9YYrlm0T6w2tj0CEZ7UJ/hqVLKpUKTJuYm3kKCvlZ871X 5/ydI74B2giTSJnxozOKxq9IUY5JpNVA9q4TtnF2+hCw1R4I8d1CL87lclcmk8kjlZxzEXqsrYlE 4i/E9MzCedg/dKcgKgQ7qVE7t/KIg2DUgigKeTTWJLKtYxPNJ7BO+8Q999yz7/bbb6/soJUTvMdP j3HnIGQqSQNNIts6rqJ/JsWin6b3gcO6jjMnLhSkUztZ/XU8AgSh2Lk3O1Fr9TCJ5MWMzmXSKVP7 7BUdWop8Pn9cjMJIsogGYbQXrD/B74ME3jNUJ+70uEabRMbiHdCxLDi1tlgsficex+7HBUSgAzFv Cg3snXWPcB9/RIxqlbU7alePtVgbJFJrxWT9/Pnzh9auDaQjEcArvY7ITJbmpg+4rquljB+dUERe bFDty69IIY4aOFELUU0i2zq20IsvYBI2SRvyow1oyCN1QFZX2WoL0ogD0S3Y6b/YJl+BaAe3cSQI CwqxwWlgEfev4Iia9YCqn0mkoWdgfuYIdHT7R9Jp44lFNSxaaLDnSn+dvg1ceKMPfxqy2Wn3pPGR A/w5FMUGZedWU0UcyKMWSuXh26dMk8hKGg7tXdI52g/Se1Ox/KNVzsmTJ9vXrVu3U0xn93j29QyD v3cz+HPt99EIGmKB/7yDf7TH3MyFphv2IyMgqhme8sdH9Sg8Lu7XeQMQZElj199dYrq5nLEr9hK3 bjpCMR+15kUwyAdDqmkSye7pHXKh4b6qnJA68/3vf//UbbfdVgCuXR5PMF+sBD0/ef9oL7tnBnyQ HO2Yv+8KYoS7l3PPqO136up5IUjc+0/RtuNPse14YUA76F0rVqy41J+qw/zss1xgo+fxxLdRlG1M Z3sN6nEqfQn4nrsWT61du3auerlcWKDQUCdUJkvmUoH29cKHHyqNH4GPblCbRPIrUqhGDRhiKKIz auD9bage5nVvyCN1JRDRMDW+T+h08gIX+DpH7mA5F4kgigMyscFtKLkiGgTC6ZrFJJJNnxCFBpoH Exo+u9iTT+8VH6UvgaVFn3rs3+D0yWHvfAU6/KCODnE2ip1byYoU7u/Hfb4ck0jnr3JNIitpOMg6 yY1YdnfNmjUvoi++sIBC/ry5PB0rinev9rxIxN/DggSiFqTnHZzgBLVJJL8ihSuq2Z9xfmPWCWzr bI5ziDQOWn9fSF9SfFohNw6Z+eOWiOUMarihzlY95G//shUp+MGQck0iTYHX3Cif7tkhufbZcqyt 5s/AYO0p+h3P07e+YdNEshuymfO+8+aLVGhik8hlqwKz/hjfwLbjhcOyZcvYmsm+WpaZPwXFQtaq lsSJ1DHsRoPwTFS1MWtUj9EIsvqg0FAnVCZLmblnzPd8KCIfflipSaSv81XCJNL3gHe2gWcSKRMa sBG6dMnlclclEgnfxFc2TWB68jDXofTEBqvDEuwcNYNJpMz40RlFMxutzoPN8O8bECbcM+E1jGfZ MpeXvFk8fTc++OCD8Re/+MWFSs9/oVD4OdpQfq+YPjv9LDxy4J8C+wciDpyvJXRS5VEL/s6tMwrW KiaRREtAWu4tcH+9p3XR/G4U0+amuBWFeHGFjwzi6zF//iA4R9X5hHve+QvA7bj5665ZNlFUI949 Pq61Qap9S+D75PP5+1OpVCAdWZrIpnayaAbH7NETCuzBEPCubQYftcavSKEyieTFBjeKDOSCLzs4 7+HABk4SyTUQp/8E8pOTkz9ZuTKwykGrwKZ8+IQGJ5o0cN/gxANf29B9nDXWJLKt43IzGlaEPt++ RtsX1c8QaUrofSXQgWDTJhyvr0Dd9UVOAYS2MWtQj1FoqD4oNNQJ6UN8csz3wOVDES28RvxiTSIJ UY8ahJlEQow15H1LO5ugSdjSJR6PB5e1nHwECvmsNbpvpojiQIiBD0DDTCJDjR/5FSmEfQPCBDij x14aM3FlZq5azLfIwLLrr7++n77uruTcj4+Pd/f09HyFvvUNyTGhZ/Thv6RlzbnXsMGZHzgNdl5U uBBMItMdV4LCW+BQA7wFglPjpsa84BJR2HFprElkyry/B0aAn6Xn8AkxEVnSSIUGRlAosBv34F3b 5ZpEiitSlDKJJLbA4Hg4dHRLp0wNrVy5cqZWJ6gOSARqjbvX++8botigNLYzJmAAACAASURBVIkU n9PObaCG5no9a26WJQ8nEonR6uaENDOyFSfmZp8xX2UeXu7zr0EmkSojyFaMkmoWUGioEzKTJWva BG+KZzUu+XajOHosM4n0+vvh+3p5iKHhapPItvYrZA35Mw1qyCN1QObPMHF+v9WZteune/P3iQP2 gwL8Id1uJ9L8oDzagX/AlGsSqfKBINZ3qZlJpGEUYW56DLp6/NPyNU1j0ycqEhp6enr+lr5cJqY/ fvgumJ56wp5370BKig2iYCNOXZD6JLjflvv+XJ9VjFpw8pAJGlFMIvnjScWPkIZDs3gLTE5OLqP0 ienW/Hb1d/Mo7aPBXwuy3zaKSaT1iPCLam0dS2eeO1IZtsAZqL/mKkO6SiiwG/chJpHACROqwRCL 8k0i05IlbSn3V/vc1JlAb4a1s9xTKblvuKO91p8gNYn03XdrbxIZT66A7hUvCqTTvL+AkbAXHAGh YXb6qP++AkI0lLmX2iRS2sa0P7PYepyUCA3FYhGFhkWAQkMdUJksMaGBDy228B4k7sBACZNI2YoU gX1dsaG0SSS/zGW7fNQATcKWKHfffXfstttuC4hik+f3+epq4ObPiWW8W7BPKOBGu2TiAP+A8TWm FGKD28AK8YGwylg7k8jZyX0BoYFeY2xi6p+Xe+7pw+w2TdPeEjj344fh6ce+ZU0lkURXiGKDd9L4 QnnnUBQbpD4J9u8njzgIiVqwM5Pl4SsHZxLpUb5JZLuks9GIZXe7urpuAKGTkMueov/OOqVSfjfD 4O/dAP5zrV6RwoX/bcE/2mNuFkLTrX08US3VEVxRCJcuvrBYtmwZq7++9mAucxoyC2e4aDOWKhEK Qkwi/VPkGMHBEH8EpyeOyaZ7Ovc/9vxo65SvhNWqHQJ67yf0GbA8uIV4HSzJfSMQqbBIk8hqXPYr 191KDxXoXpw9ceLE1zds2LD4DJBWQiI0PBOIRBDbbu7zD4Imkco2pr290nocT/RALN4lJi/ce++9 T6B5aeWg0FAH1qxZw0wgfZNd87nzMD933J4rCwHHZqcTZI0UACzaJNLX+So9auA84NEk7MLilltu 2UFfevi0YnEBpiYe8/qIXBi8zMjPbcQ0o0mkZMqQM4rmBOjITCJlwgQ76PzMAdlp3HX27NnO1atX z0Y97/Pz8+vT6fQXxPRiYQEOjnzKPEHuSKIrhPDRFX7d70IwiWTLUKU7rgicy3w+f1+9vQXkU+Oc +e3h362RJpEQa4dE22WB75PNZu+j9bFq5wdpbmT1d3pivxWNAPLpnHyDfzEmkfw0UEfAVJlEOvfm WOIi2iHwPaYYmePHj/9s48aN1Tw1dSOXy7Epd8/j01jUXHbhvB3VJIz2Su4bnhgBvrahb7qVe9/1 iw3u4JTkXlsOieQqWLb6FYF0Wr7PbtiwYaGyoyKtyOzs7OqOjg6f54ih52nf54RU5Aq03ZwEu73p eyaq2piLqMepdum94zCaly4OFBrqgMwkbHpiTNJp8+Y6imHpTvihLITR6qdV3yQyHpebhBUKhfuT ycB0CmQJIGtwTp4/CHqx4I6MmjgdcXckC0BshFodymDnqKEmkRLjR6uz5l+Rwn2w2fuqVq/IZZ6D Qu4cxGnjiiO5YsUKNkL4g4jnnI1kfZm+DTiYHTn4edOh2YnK4BvbnhDiv4YdWs0kUipMiOKH4TUc TO8Y0jTeAhKhYX9wKlCJ78Z79vjqMX/+IDhH1TlyuSaRyfZrQZSOKI+l0+njiz4jSCshaaMcMIVc XwSbuUVo0BNnCicf6ly+SaRsRQo+Eoe/B7fJp03878aNGzM1ODd1IRaLvUNMGz+7D3K5Wev6l432 cvcNX0Sh/Xlf29B9nPnFBuc5bZ1rf9uxErFh9YZfBcmSltO00/l33d3d5R8QaVnoc0Tiz3Dcak9y ETcW8rabUzdlJpGuUCYxiaxkRQo0gqwNKDTUh0AjdGp8v+evIHTaAvPeuVDEsBBGd667ncdiTSJT HawhH6gix5LJ5ONVPj9Ik0DrRMAIcuLcPq4DyN2xnVFU3X/z94sDBieG+TtHzkiZUeIBIzOJ1CQN LH6akFTQILbpJEutoknk3PR+WLbKf9psn4ZIQkOhUPgt+vLzYvq5Uz+DU8d+aD2QJZEYftHEu4Yr MYnkO7Kqzq3TMOVH5XmxwTmHTh5hggYh3m/pOaN7qMQPvuEgmzYBDZijbY/aBAozMzkmvW5KCTui SV6Yj8ZiTSKT7f7lWW3qfg6RxjEzM7Oys7MzMEdyavyAPIItVCgoYRIpWb1CHAyJYhKZal9akZaZ TGZjKpX6NTH99ImHAgaOvPeF/9nlwHXAwLnF+AUI0ZxXZhJZidjAVgDqMjX2AHd2d3ePRz8SshSQ GkHOPBOIuGEY/H2Fa7v5hTIDeJNIn1AG/jZmJaKZTGigeY616n2lWUChocaoTJaY0MB3lDQn9IcL P6zUJJIPRQTFvj6HfjcPf0cmJTcJw0boEuWJJ55Ibdq0KeDgdP7sPvNV1mlyR1FFh2BOHPBPb/B3 jvjRrlIPGH5kOGgCZJfGDacL94Gopknk/PS+gNBAeXmUc24vJfpJMT2fm4DHDv4duH1CxRKcfiHE oXyTSP4clmMSya9IoYxa4EP83c8LglVEk0g+b5nrfCM6G+3t7S8B/0mEzPyzkMtOClEaYrnUwg6/ TykfDVfwEwQc97yHmEQml1iHDSkfWn9vBCGsZWHuGGSz49Y9wBUKDDd8OVwoCDGJFEblZYMhmqT+ 85E4hvH/2HsTMDmO60zwVXdVV1XfJ4DGTRK8QIoyIVmWDImA1rJnV5qxaZPyMV6vvB5bvtazu7Zl W5RFjuRZymN/tjWj8dgj22trPOPPXpP6KNljjy+Ct0RKPHAQJEAQBwkQBNCNPquq696IzIzIFxEv MrOqq6qrG/l/H1DVWZFX5MuIF3+890cP801MgozrM6zXlbDS6fQX2IcSBlAuLcDF80843w0BRy0t gmo3MNkAXv+nbDPaXY2MaFDJP5HohS27for66fLCwsJvjY4S8hMxNjTYe2sS8I4+g+9TqJNKWrsC pu8GYIpEBvqYDdixjWhougJiOIiJhjaDElkqFt5mjuhltYMVhAN6idTwY/97K0QizRUpTJHIjTZr ECMYu3fv5oKlylqN3NlZWjgNMvXAgSWlQWv814NIJCX8KO7NTyfyCQZRFpMNK8tkP3R7Pp/fwpz4 t231/cILL6TuvPPOP9XrnOPk0c9DhdV9lOgKlQgRhMPGFonkS4qm+68z6rRUKh3KZDJUdbcN1Cot S3NHyBQT/N7gemiHSKRS76DO9nD0Jkeht2+Hfun1QqHw2MDAwOorJsa6AJXaKSZCTKKgLhyVcKKg SZFIakUK5wweOZZM72b9xKB+yctHjhz5xr59+1pQI51FrVb7GLs3Yy3Is699GSrlFafOlKg90dYC MdurtRuiL3R2a7NI5OTWHyQV+9l1PTA6OrrQQJXE2DggV5xwuzCVbNAjamS7IjovhShTRSLxihTN ikQmEj3Mfo3+kOsVHWV+3CqqIEZMNLQZZM67kzbhiTQi55MD5zfquY5K2YTI5yWEH523b3UikZAY hCQhEsYc+Uc77cjH6Ax6e3uNafmrVw5LISrFydEcUDLE1impNfSSDANlcCRnrDssEolXpIC6GtGj huz6ZIS+ekWlvAClwlnWSe3GVZdg7wmvz/9mq+8777zzAfbxbn3722/+DczNfNMhXRJidjogusIk QqDjIpGYbBD7RxGJpLQdoohEDg2R2gKvsTp/01bfbYQxUFuc95e11KM+9PfGRuz4uaY2YgdVbhMi kaksmTZxbGBg4PLqqyTGOgKhy3NYy4nGREFdC1/msBEFuKz6PjQrEunqihh4ct++feUW1klHUKlU 3sf63d/XtxdXZuHc61+NHKkQJBJJpV7oIpFqu6ueQ05kCdqSGKj1D90G49PfR93iN7785S//QazY f+3B054yOpmlhbO+uyG+GHYsgPo8yhek/E2Lj6kcD0w7TqWngdAWuRI0WRQjGmKiof0wnND5mcOu w+eRDbrzyRFVJDIohFEwhVKUqQGRyFT/rUA48qfWyJGP0RkYRMPM5RfdNp2YDRHOnyJ2JwbtukKw TjZ4VLQuEimJaIIcwB2MHlHRQzhY6prLKqEh3w0RqbFKkcj84mGdaODXw9MnSKKBOZj7mYP5K/r2 lfwFeOO1P5LRFmJGys2xpaMrmhWJxGSDHOQbKRbm4FaWQSKRSt1aiIQwQkOPjqHIBlG2f5hM63qU 2thOFAqFbaxNvFndWnfEfp1vAVEfUUUiqRUp1Lr2iYRGRCKTGXLA1vE6jLF2YPa7ldnvLerWOszP In0RkigIF4lUhB+JiROs0dOISGTK1JeD9bgca7lcvj2ZTH6FfTVmbo4+/x+gVCqoq9BIEJEK+myv IC4jikRSK1LgcwSJ6yX7xmHrDZ8Awl8ss37u47Fi/7WJfD6/k30o6p98Fa187pK0H8XvIHxMv5Q6 GaWkDUUUicRtE2XHlhUn4rSJFiAmGtqI5eXlyYGBASOReG5GzBLrs1to1qCFIpF6KKIt3FF2Ps6s QXc48jE6g9nZ2aHx8fFvNbZffsl1dGTDrYe8cmiOkGa3OjmgODGgDo6oFSlsHYyqA6EOsAwHy2PM SR2IRPMikYKYKCwfhtHN36NXH6nT4NX1l9hXZckEvpTZ6y//Fjt+URKAgmBw39+61GGwLcGpEyHO LfXYyQb5yBJmHYrtQToJfi1RKQBqWfFXK0QiBwiiYS0GG+l02iCSc0unoVRcNsgBxaQcmM+gnSKR qkMH5ICN57n39horecTYoKDsd3mR2W9pyQ3ZDyQK/IFpsyKROEUOtP3EZIiI0nQHu73Mbvca97He 9BnK5fK3JJPJf2BfJ/Xf3jz7D3DprWed74rYsRwoifYaRSqQkX8ABqmLoxIBkTxeiSCRSEpcL9GT hG03/DL0JkeMe2Rt0mdTqdRLq6+tGOsR7NkbHYzQZyBTb+UEhko2YHIAT0ZRIpGKvwmqj6lORpki kfGKE+1DTDS0Edls9iBoNG9++Q0oFufchj1I+JEQidRDGGVZMGcVwPseVSRSX72Cmu2K9Rk2LkZH R7mWiBI3VshfguWli2a+J5g5dfqgSc6irjORSF4uSPiRA6cxCGKimHuFbayAtkrL9lKpdGtfX98r eOP4+Pjn2ccN+jO4eO7P2SD1NcCrAoBHMLikgv89bAlOQYQIkcioK1LIQT5Rh90iEpnqG6GcAq4t cKjT2gKUPsPi1cPuBdWJgQKYUR82skEtq9UNnrWUv3hl5I7eRRD13pOcgJ7UFv3Sq8vLy0+MjJiD hhgbE5T98rQJa9Qk6EQBIgSJwahKFDQnEokjL3vTrNlMGAEAc4888shL6yU8v1qtfkcymXyIfTXU EedmX4Uj3/wPXt/IQbTBRNSeLNVhkcjpXT8NmYGbqNt84sknn/z1AwcONF5BMTYEqBUneNqE4BHI 1Ft3T2JSCRGXyBdUiTLC30Q+ph7tp4tExitOtA8x0dBGUCJLczNHSOFHXYtBEgCorB7CaJQFOoQR D7KiiET29o5Ab99O/dJjkbANDGarZtrEpRedTzLfE8zZEBy1oIfBryeRSLEiRQLU1AQ5YCNEIqFe hJXcq5AZVPtW5lDyqAZJNDAn825W1z+m13Vu8VV4+42/RFET7vDdPZ83KpXiC9GW4IwqEqmkNxB1 iAfF5tKW6uCWnpU3yQbdsaDOoVxHzScbqGgGWDttAaONd5cFxDcgYI/68KN9gsoSgwZxDlnX0UQi M0Q0A8MLIyMj89FvPcYGgGG/s1cEUWaJmiSJgjrIggFEgQNC+6FHNlLBIpFJ2m4fXy/h+bVa7cdZ +/+fQCP1OfLLb8OzT9wPlUrRJZst/RiVFqFHKqxWJBK3u0Ccg2PTjh+G4QmDp+K4kM/nv//AgQOV 5msqxnoHueKEp8+AyXEj9VZJBbSLROrRULL/o/xN5GOaEynu+Siigb2vR9dTpFS3IiYa2gujFeZL BQofFBMMYqaAFH7UygaJRAaFMIqO3J81EANItWyGFgl7mTnyl1pYNzG6CwbRcOXSSw6xgNMRlFkU YjZEj1oQA0olxNYpqZFlkgwDdXAkBlAUOaB1MDayQQ83FVEZNh0It4NqXCRyZfmwQTR4Og186TKe s7glm81+Ua/nWm0Fzp38HefNFh0u1ldQtBa83rOVIpF4UOwP+NU6VGfg3R914cKoIpG252QjG1z/ wHd6B0bMZS1hDZbdLRaL1/f19e3G23j6y/zcMRmSGUQONCsSqdt0mI4GJRJpEdTreB3GWDsw+72O 2e91eFudvcTzM0eNSBx/EgNIosCcDJFHBEwU2EQiMaGRoMp6Nt9H6zN0faTlpUuXBjZt2vS77Do/ Rv2eW74IT/3TJ6BQmPfcM/xOm0SBC61dCUyLaEwkUpzFJhI5vuXDMDFNRpCUqtXqR2NfMQYQK04s cKIhUMMLDLLBnNBC+whfUEsbwitSSGsWPqY+ocU39aYhld6sX25tdnb25c2bje0xGkRMNLQJNpEl J6KhjjtRNS8uSPixkbKRhB+FA6CVpXJ3IdZn2LBYXl6eYo6BwT7PXHrJmHk2ZlEiikTqIbZmB4Mc JV3AB1DfENLBYHJOOko2BwsdT5xDEUUFUFITIOFGC7jHMkUiV3JkOt/Bxx9/PPnBD36Q+V/VP2R/ T+kFLp75IyitXHTuCesyOKfvQTOCMqrDn5ESqR2USKT/mykSGXVFCjnIR918lMGtnAXDz89CJOid vn9mkNeDo2OGCKJhLbQFUqmUQSQvL5yEamXF+e5xQsaMYljURytEIpX6AzNslNLgifUZri1Q9rs4 fwJK5YInjYLaZkSMUUSBT0ZoM4pofxw1adN+ULhmUMv29PZBX1bTXQUnSqyr9Rm48O+mTZv+iH01 L55heelNeObQL0MhP+P8LfLQ1b7J/s77QFF77p/mbK9t0sA7gkLyaO2uIBvGN38XTO/+CfJe2fF+ NplMfm0V1RVjA4D7PHfdddct+vbF+bOuHVECjsiWFb/DsGNcCvWLyrim7u2n+ZuWCa2+9E5Q3yUH pzdv3pxbZVXEgJhoaBsokaWlhdNQLC55AxhNM0EMBLyXL5JIJBHC2AqRSGq2izmhh2IndGOiv7+f O5xKK8tD3AoFT0uEYIBdYHJgY4pEuq9OgkxNED2YmIEuF16HWjXHHGIlvWh4//7972HOJh8df0Sv +6W55+Dqpb93rw9U4UehxSAIBtHLqqtQaMQEIhWUtA/R6XqkSdiKFPKRJcw6FNvXQiQymZ6Avsy0 Xo1cW+DxTmsL2PLbcYSIHvVBDhQQ2QBe2SjEjjxHgyKRqb5pR6NBQ2lmZuapePbm2gGzFcNH4WkT fgRNhKhJkigIFokU6ZyNikT29d/Ivvfpl3yJ+VrHayK8rIuwsLAwOjw8/BnmN/0fgIM8EK5eOQLf fPqzjl/ovK9em++8w0bfREcX6iRmVJHIoNQLQfL4XYb7bCa3fQS2Xf+Ttlv+TE9Pzx+2qv5irF+8 733vYy8rpPG2UnEeVrhPidOClAioAJFIYkJLEJf6ZJSSbkH5myAmXP0JrXjFifYiJhraBMoJncEK /ij0mxJ+jCQSaQlhxDMQVAijPsjChEdvaoL9Mx35XC73OOs0W1pHMboDzFaNtInLb7+o2qrGAJP5 nmDm1FmZ6nUiEgmIbAgTieR7FnPHIDv8bUpdMkfzZ9jH3XodVysL8Nbp33Uuwa0DVfiRX4yixaCc a21EIikBR0UNmhjcKjNp6AnoREIYocExOEqmTbzYaW0Bb41wY6DGI9aMtAlEDpD51dhRsrw3FLFj S80IE4lMD5ARa8/FszfXHMzUTuGj4IkJ7PwLcccEhBAFdpFIPZ2T0n4Q58BRa2kz6I7jUE1nS9cY fDb3Ax/4wMc5yQDEqhICF879HRx74QtQrZZllBlu8/3oMNw30dGF1qWdRXvSpEgkjnbYsvOjML37 R2y38wfsGv5Nk1UWY4MhmUyaaRPzZ71AA9yP+WQl5QsafgchEtlD+IIqUUb4m3W80l68tGW7ERMN 7YM5W8A6caWTNZSWBW+AXz6VIJAOQESRyKAQRorwoHIgGV5kneZcqyomRtfBcDivXHrJH/AQKQ3+ 7JQ2iwLmbAjFVBshtogcMHUgwGfAxcCNIAdMgUrNmcLHkMD35/VU+ByIbIgiElnMHTaIBoYfpir9 4ukvQK264A0MNS0GJPwI0nmENReJDBJwJIULxfPDxAziS6iohaBVL4ZooqHjaV0rKyu3sg9l2YZa rcycqeMhWhWYoBLorEhkOl66+JoHXw0nlVJnFLj9Xr1y3LQ9zflX0jktRMFqRSL1c/DfKIKsm/QZ zp8/n926deu/uuuuu36B/bnbVq5aXYFXDv9HeOuNf3T+FulxhhYPeO0A1TcFEYx61J5Xwu3SGheJ 7EmmYNeNPwsTW4z5CIG/fPjhh396vaz6EaP9oFacWJw/Y4/UsfiC1ESRbsdGmjiAOonq7Gf6m9hn zRBEAxeCjKO4W4OYaGgDbCJLs1eOSl8zUDMB9JevzSKREWYNWltDMboFzFZ3M1tVllrktjpz6Yj3 3flfi1rwZ57JpbaI2RBrSgOYoj1KZI4lokIOoJADpkci+AM7mmywRWXYdCDcDsoUieT3Jd6zUv5I pHpfnPl7yC180z0mcjDduqSFH8ErK/QVKJFIg5hApELNuztKJNJGNohK80kFtQ7VGXj0HLxn2WqR yKHR7tAWSCaTH9S3Lc4dh2ql5IaGKkbt2Rs0GolAz/AERS3gEGpbREV60KxDnufO7qkFNRNjPYCy 37nZV6BSLXmkKhCkgrZaEErRdGBdTaIOqxWJTPZmIN1vLqNYLpcPpdNpY3snUalU3sXanx/dtm3b v2R/jgeVXZx7BY6/9NuQWzrv9p+yXfe1tLAWD4cgG4y+iejHXGikoyUtArfR5KQBr/fUCOy5/VdY u0tOQHH82RNPPPGx9bLqR4yOwVzacvGc35dTkTpOB5kw+jQJ7BOAbscqian7brL/o/xN9i3Tv9u4 AdYnxkRDixB7Fm0AJbI0f/UElEsF90VTSIUAzQTl5QsXicSrVzQrEqmr5jvHDnHkmUP75+zjB1ZX a9cUPseex31rfREczFaNaYr5qyeZ8+RHUcsMiqCUhmtYJBKnJlTLb7N/V6A3ZWg+SlRKb8OV83+s pTT4zqZDBhDCj1KXgSAmpGOqExPgkwp62oeq5wDkihTu89cH/H4dYkcgLF0geOCtlQVQHAuOTP80 9KWNei2vhbYAlRp31UubMIkrd5stEoEcKCAiBr83mGwwy4aLRPZldkBPr5ECVzh79uzX9+zZQ97r Qw891HvPPfdwpbrRRuvpWgVzUj/ABvNPrfV12ECmdvIoNm1VKlP3SWubEbEYRBQEiUSKYwWJRPb1 8wAiwwd5I51On2ppxUTA7Ozs0Ojo6Lf39PR8mP35z5lvdH3YPrVqEc6e/BKcP/sVNCDSI+MQyQxq my9SKcy+ySQKmhWJ1NuNwbE74MbbfxFSfVbu5E8efvjhH49JhhgEyKUt3eijuj1Sp4EVKUw7FtB8 ENSmOf9p/maqbxR6k0P65Ra++tWvnoqjdFqDmGhoAyiRJXepQH9gpLP4NVDDzpsRiTTzIs2yRrgj Ijz60tPUAKl89erVp6am6IGTl6t8oBX1dq2gVqs91i1Mqc3hVDoEQLPZEJDSAH4ZnI5wrYlE8qiG 7IgtzLQGl899np1mRb5/fkoDrhDT2exGkcggAUfVWQDwZyLcbbZ0AWppSzdt4p1UhT7baW2Bz3zm Mz3333//QX373MxLSj3oxByuh2ZFIjFJF0bsUCKRVDQDw9N79uwp2u737rvvvhNikqER5E6ePPnc 3r171/o6SNjsV6bLoXaTWuZSj5r0fQhoSiTSJ9vcPoDSfsjQdnuolfWi49y5c5ktW7ZsTSaTO9n7 s5f94xfxnvHxcd4QRezA63DlrX+Cc6f+FFYKM05dKuQwioyjl09W2/wgkUiSYKyrkQp6WgQlElmv 98CO678fdtzAAzR6yLti+I3Pfvazn3zggQe6T4UzxpqCpxBt27bNIN9yy2d9LRJENpgTRUG+oOoT UCKRIEvZfUEsEklFMzAcjwm01iEmGtoDa867EgWusfh4gANaxyHCD63CjxFFIo1wR+QoUNEMDM9N TU0t2250ZWWFL2GzxfZ7DANc3f3pblB390gi01Yvv4hIKG+IpBAOnn1RKQ0SpkikL0TlHYNiqgmR SF/bwYyokEQBmA6YQeoRM8ONikRKQgORDbpIZBDRsHD5Ifb7SUnkoJs3NBPcASJ0tUgkJeAo6xB1 9HhQrJMNerqAQkygcwyPdYe2wH333ccHGso0H8+7Xpg7ofjsMhIBEXONkANm/fnbBfDxpFOl2JWA ew5qwBaW587aiYPhtRID4Zm9e/eW1voibGD2y4VOlGVH+JKsV2decVOyUJuNIyxVUsGPmlQGAgkg iYIebb9GRSKzTdgth6dF8USDVcT94szOnTszDe6HwJcyfxYunP5zWF485UUFeu08jlrQ2mB/yWT1 O27zraHnzhGDRSKVFSk0UomXyQ5sg5ve8fMwNEKuxMlRYtf7U6xN+OMHHnig+eqJsWGxZcsWzrAq RFwhf8lpY3wizE85tUXqBAuGa36HNqEliMswwXB+jszALuo2YiHIFiImGloMu8jSy45hiw5ZzyeP KhIZJPzonitaWSqEMTvYuNAalesZIxDf6BZ192KxeBvognbVEszPHne+C7LBHWBayAbP6VFSGrRZ FCM1CA2aSKYa26fWwegDN4UocL1j6YBRKsTiTHhmWJIcFNngdWIeq2C8twlwHUgsElnKHwWDSGEo FU45RANIsp5evUJPY8CK5P6P7jWJdCidmJBlKWLCIxVAd24B6zmA1u9q3QAAIABJREFUvK5uEYkc HjPbp7VYdpedz0yNmz3Gw+WlyRgRPIiYWyuRSIdoGLjNuB9ehz09PcZ2tN/BgOqIoYHV+2PdIlBI gbLf2Su+/WKCwYiwNEiFaCKRCjHhtNN1ZdZS0SbQRCJ7e/oh3X+dcR/M1zqUyQRzAZ5/Yl35odWo 1VZg7sqTcOmNRyCfe0MlGMBv842oBdQGu2SEP/PbCZHIOvth++7vhd03/Qg7n7GEqMBlZiPfz+r0 8RZWWYwNBtaXGDOWy4tnveEMrUtCReqEC4ZrfgeoE1qUSCTlC2YHdhv3wM5ztJvb8PWGmGhoMaiB N58pqFb9CQ7b8k2gd7KrFIlUX9RwkcjsECm0FujIx05ow3hsrS9AgHI4r84ed8gGMbgLIxvEoEqa MsQikfXaElSK5yCZ3i0PX68XYe7Cv2dlq1IETBAT1OoVUFeZf0r4UWgx4BUpIq9eAQnAaR+GIyyq Efzn79+LPyjGNoHrUJ2BR8/Be5aNikT2D+5ycik1FM6cOfM1m7ZAu0ClGznLAnqejEKw4XpAxBwI O4bViUSKaB897YQSicwMXA89vQP6pS8+/fTT3zxw4AB5r3ypvrvuuusDjdfStYsw4matQaV2Xr70 ovPpv+Z0hKUkkJsUidT3w7OWVDonf4eyTqSlUZ+vZTKZNyPc68FG6qY51CC3eBzmrxyCuctPQaVS cN9pajUJwG0+qFELBhmh7degSKQPmsQU7dHI2K1w0zt+BgaHFU1oHY+trKz8cDabfWu1tRVjY4Na cWJ56Zyc2LHpkjh/GRNFYb4gqH4HmBNayko3YPqCWSKigRMNrauRGDHR0GLQOe8vGuWo5Zt0kUhb CGNUkUgzL9IsKwiPVHon9CZH9MssnD9//mu7dpkvIodNn2HhrU9DdeUECEJDvOzye93/Hvyby/gr 3wFkZIj7m3oOIZyEj6kfV/1NPS4+nwxTBLdNcv+JWWxvpkJsB+13Vv93/bM/hXRGnUzpMn0GI75/ 9rJrq8jfE6W9T1W3wZbSIFjmjSoSiQkNSiSynD+iEA1Ll78E1fJbMgIBayZAXQ2hXc8ikZSjG5Yu wC8ekw3qwNstOzpORls9E6Qt0A688MILqTvvvNMYeM9eOYwcJf9+jGVeARNX7rbViERSK1KYZb20 CWJ5QIYnDhw4ULHd7/79+/exD0U9sl7LwczrP8aOX0Ntn/+8/Zlary119qnL76ItBtQ2i7LC+cRt t9MWi21aHyB+d6petNdEPyKvo+5dC/g2K/oR/xh1dG3iOtE1eP+GRnbDXd/1+3qVLR85cuSb+/bt s1XpmsIjju7St89eOizfN/FPWQLbazcNArkDIpHZ4eZSpjz/5GAD1RMZldIlyC+9ArmFF2Bp/gUo l5alneFVg8w0CUwk+3/byQg10kP+BuEikbgNoUjMvvQI3Lj3X8H0jg8F3SrPU/9/Hn744c/GOesx IsLoaHKLZ6HXIw+CdElE+61OFIX5gqD6HU5ZdULLhekLJpgvnu3fadxAsVg82t/f34KqiMEREw0t hE1kaebyYdUZ96B21ML+iVBzALCKRAYIP8qBkvaiUuGO/XRn/syuXbtWbPfLXkaei7VJvakSVAqn nOt1Bt0Js5OlGE3Z4KBOlF8smbPotTYU4y8HUwGdc1DYoj7D4D4n/Ozq/gAXPO9VbwB5ffZvNUgG XmWXL19+Znp6Wt/ecXgO5wF9O5+ZlYMGz7lGf8owUJ1s0FMarDMrOB3BIuAjIWwchdjqTqh7Oj+i QhIFYuAmSxHkAKiEm0uaeOQcCjelojJ0QkMXiSyvHIEsfLdzlaXc85Cf/3s/hBanMSDNBJzGoNol rhDTnrtJJFKctVGRSDzLT6ULjBBEQ5Qc7VbjjjvueDf7UCSqy+UlWJjj4vfYvkHejxHBoxFzmHTR oz5aKRLZP0zW4aFG9RlK+eNQFyN++ZLVZbuRUOwYTFtKYNsVNukW1G3XuyOvofHOJdJ/wE8VciJ5 UNXr/YhT1vsNk25iICYjhxIgSTd5a86O6Bo8TG76FqrKnt63b1/ZWqFrjP3793P7VYijSjkHi/Ov C79eIWCwZkIrRSJ7iP3qWlkxUB4gfJMo776XGmhf/icUVahW5qBammV1dBmKhXNQYv9Wcq9DuTQn iSeSKEAkr0EUGLoM+m/Bg7HVikQmk/2w+8Z72b/vg97ewNSTE9Vq9ceSyeQzsfp+jAZgEA355XPu uMXzeWy6JNK3rFMTRUG+oOZ3OOfBvjou5feL6cw0JHpS+uVe6e/vf7slNRHDQUw0tBA2kaWFuVfl IIMDEw7CIVSiwBVSIUQkMkD4ESB6WYpoCHNCe3t7P6hvKxVehWqt4jls7vn860EMf53oODGpIDtR k1QwZmAJUgFspAI6biNhizrZIAe4/D6JBnBskpyBfW56ejpvrdAOwnM4lRAW1+F8TZJiCe8LJhtc hJAwVEoD+GVE3RlKwETnIQkLZR12f+ZIH7jh9A05cAsiByBB6EBEi8qgdCDAIxsqxVfZhjI7VgEW L/8eqj9EFgh9Bcd21DQGXFZPY8C/UyKRYjaZKksRE3IgSL2X3rWJZ7oWIpE9iR4YHifTuh7tdIg6 O5+ZbnTlKArPpKMWsMNDEnP4mSNyAOdXU8tV2t4bXK/8/95EL2QHbzXuhw0kAuuQCj0v5l92FexR RIqYqcZkg+LhiUYEr9IibRf9rtk+uhL5zjrpKd4x9FQh0Qybdh5ARojmG0cOIQJOVjZKQeKY2GSu gtLt+gzsWRt99uzlI+DUpmz4/TZd9KuJhG/TWNzRKwU+qRBNJFInJiiRSN4/83SpdHaXfsn1QqHw 2MCAkQakgPknB/VtpfwxWLz42yhCEaTN+hGNNahVV9j3ioxwEe+giJSJFLUAjUxwgLofMRij/CSo +8S1eBdtIpGJRB/svOEjsOeWH2T1akSvYvDIhd+5cOHC/du3by8EVnKMGAiLi4tjQ0ND2/G2er0K hdx5SUA7/QW4fYE+cYjJBj1SJ5oviPwOInq2XkckJgCpzwCxEGTLERMNLQSZ8z5zjL08Vc8JNXPd OfCsoJ5D1EqRSDMv0nPw+Qz8kBlWG+bIU04o78iN2d9EQkY3mKHhxIC/R+9E6Y48LDJCkA22zpkU WwIAW9giHlQrA1zh1KMGcJwmGh6zVmaHQQ6YZo44TpYRwSBvWmxz/4hFIsWggxCJrJWgUjwBhfn/ zty2BanLIA7sR1IIYsN1SHUSTSEmABTyTczm+j2y29NSK1KIsoGrV1iiK1Q9B5DX1SmRyIGR6yGZ HAQNS0HaAu0Cld8+c/kl55NsG8AnGwQB4aOuEHNhIpHUcpV+/Ymy+iDXLZseuIkd35i9nH3wwQeP 2NTjvain9+vb3TZee7YgBu92ssEt49t5DbDtAhmp4H/3iqJoCPmu1NVUIUnOGXYeQEYod+hdtxj4 yncCZDQEP/b4FNlndrs+g5na6dmvaNcFmaC266id1r57pTRSYfUikfyZWyItjw0MDFyOcK8H9W3F /BGoVBbd6yHIBreTF/uD0h73eEbVcNQCNDLBET3aMqpIZG+yD3Zd/2HYc+sPQDqjLJZD4RvVavVn k8nkN7Zv3x5WNkYMBf39/UajWMhxWY+y9LlltFvNTN3UV6TAkTo+wR7mC2r+nxHB6o+psoO7qduI iYYWIyYaWgjKCeW5u/4MsVPKSjbUlQ4XNFKBDmEEURTCRSIxMYFFIvv7b2CdkenIB+Wa2vQZirmX 5WwEnv11RfOip0LonSjVkYdFRvCGjN9fLUF3zkEkBtTROUA9h2Rb8QDXq2tRr+NT5mzXWijk20Dp M1y98pIWuSBLuzbrfo1ENohBlTRl6B6RSLxcZSMikT6iiUTmZv4IqqULzvn01IS6Zre4s02ASnZh YgKk3a1/kUhbugAWVeTHHB033yUI0RZoB86dO8eXvPt2fTtfuliZ4Qf/2vWlLZW17IW9IWIOhB1L p8o/lm6DtqVB8QyPOAcVfs7w2AMPPFCjfuDwop6UNJF6bRnKK+foZwvqu+7Wg2+7ddmdaQ5mvS7f Vz1SQbVd4SSq0RA49QJdlE9aKXZuJyNUjgYdQ4nEcDcND18PqZRSNRyc/Hq+0+RXVJw6dSp9ww03 7Ne3Cx9FQCF0NLIBgGiz64hAVkgFrBDfnEjk4Ahpt4fC7jXIPxHPX19Ng0NNbzMnH0T/IXPNxW8Q ErXQ0AQHNBRtaROJ7O1Nwe49H4Ybb/1ByGSVQFsKs+y6f/XXfu3XvhjUJsSIEQRqxYn88lnyvTKI O+TzKBN8/EcvFUJJC0K+oJisaFQkcoAgGuIVJ1qPmGhoEawiSzLnHbEKGgmAESQSSYUw6iKRQcKP NpHIfrozfzIo17RYLPKdFBECrqxfzL9msIbKfXiRDVFTIfRO1C6aZ2f8vbVyrJ1z0GyEzXHwnV73 OeKB6uDQdmrmoHjx4sWvd8Mswfnz57Pbtm0zBkwu0eCTBxwGqeB+RTBtWexDiURi7QODHNBy6hKo 81CYasfJReSBQg5oAzdENohxh7EkmBFipw7q3P28Y2CnWrk/RDZ49l4unjdEIkGzqYRit6pDq5No G00kUhkYomepr0gxOtEd+gzs3X0v+8jibcXiPCwtnHO+K7MoEsi+vfuhVqQQz8zvKVorEjlA6zME 1iGlz7DCBmpVZoBKSgx+tt5LJupCHF+1ed2W/D5LcgMeAWHarqgzr/JEaIIgBDSyQbzeup0HkRF+ HeJj4IgjgHEibYLhqU6TX41g9+7dhv2WigvO0nN0u+9He4g+z7U9bNNuGxIkEmmkc4LPAzvbagnZ TusikYMjJGH/aBhhb/NPSsw/EffXo0SN+teO/TXb5INz7Y1ELTQ8wQHGfk5Zy2BM/uYwDCnYff2H 4abbfgAy2dCVPbmY7u8uLy8/ODQ0NGuLbooRIwqoFSfyuXOkzYv3SCHu0DsmykmRSCotyPMF8WSF baLIfRPVCa3+od3GPbD25Wg3R6WtR8REQ4tAiywtw+LC68bsL4foyCmyYTUikUHCjzaRyMGRxp1Q Kv+xmHsFRJqIuGeSHEmoIpFUJyp+a5VIpCA6OiESOTFFpk18vVvyHaenpznJoMRRl4pXYXnpjQBb dbeLDdKvB9qWxT6BKQ0SpuOq8HJAMNWELoZCeoD7bHH6RiMikeJeqNy/oKgMZSYakL0DyJlRPTUB kN0qmgl1taxBTMj6QY4xsmcRFi7KUSKRFDGBf0uA9l6KayOiK5QnZpAKPmHTiEhkD/TCyLgZol6t Vjseok6lG81cekmSIg6wY4OIBCpqYbUikYaaPB5ne2X5e9Pb2wfZoZuN+6lUKof6+vqs90uGni+/ 7BO06Dkqz1aLKGq7SGRA6oXQZZCvldaP2MiIumbbOBKDl58gUuO6XZ+BSu2cvaKmTeB234VXx9KW 6UkEPZ1TJRXCRSL1dE7+WzozAemsIZxcZYPix0dGAjUGrP4Jaze89yZh3AfWQcGROBwU4csv0vAN wqIWGprg0H8LHoxxDYYd1/3PTopEBIKBV/F/LRaL92cymXNDQ0Z0TowYzcBMnVg+J9sUchKRIO50 X1z6lqK9Ef5oqC/o900+Ee6W50Komexm/XJrs7OzL2/ebGyPsQrEREOLQIksXZ3hqT6eSxPUkaOB q0AnRCKdDrenFwZHbjPupxmRsBWZNiHvAnynQpv9TfjXE6S0LAb81KyBMVMAvjPoPhOzUQMbqWAh MZxzoONGEYmcINImoLv0GYi0icPyu0IqqCMXn1QIIBvE3wYJQ6U0+EdG5MDGFYkUZINV+BGFiOtl DWIC/PEVaMfCWgyK8KNWNnD1CrBHV+i56+0SiRwauZlSRufaAofXYPbNGKhdfvsl9z7loBisZIOw b/SW+AQE0MScYh+IiLGtSKHWn1s2O3QL+9tQ1r7Y19f3iu1GvWU8DX2GleVjMrVF198wnq1G8rn3 qLEhohHBBJy0XfS79p74iCYSKcfEoNt5ABkhulAl3cKt8NGJ9afPwGD6KFrahELW1lFfoJENol8V kwh6Oqc4Bu7/qXROSKjEBSYmhogJEIYXR0ZG5sNulPRPuO2Cej79PnQdlLDJh4TnJ+i+QWDUAvhE rv9b4yKRmGDYvvt/getv/n6HnAkBP8tDlUrls6lU6uVMJnDViRgxGgWh0XDW7RMaJe4IX1yQDd5f 4PeLdRQZBYDbGNE3qUR4HfoHd4Hqgzo4vXnz5lzbaucaRUw0tAiUyBKfLVD6aW0Ah7c1IxJJhTDi WYUwkUhebmD4JnYco7O5GuTIe8t4HtC3F5aOoo5cEA7qeZsViaSVls1QLOc7BEdGCLJBJxWCSAxx XIrEwINqft8Tm0wHic/AJpNd87qZRMPMS4r9JaTN+g28QSrIwvhIpi1Ts7rNikRSTLXQxRADLEok EqdviMERiMGMkvunknphuX+Ar0ben10HIgFu3VGpCXLAVkOEA+CQ7fUvEpmQh1IHqeL56ukCoxZR 1U7nEV+5cmVwcnLyPfr2GUefwR8ciTsXtoltxBa1gMkGwNtQusVqRCKpiDWGR4Pu94477vhW9qHI +teqS1AsnCWjFvBzbFYkUiHgpO2CEqng7yFs1yuKoiFw6oVJFIBVJJIkI5Racc87OHw9JFOGptHi I4888kK3LgN46dKlgU2bNn2bvn1uRteQsrX7qxeJDErnhDqaEPCOMzTauN1yWP0ThyTDflJd3pt+ H+LaE56PEjb50IxIZFCUpjiHH6VpkhE9PX2wddeHYfeNH4W+dKjII9/zyx7BcJT9CyvfMZTL5Xf0 9PSEMiTdjFqtdoUTN2t9HWuJQqGwNZNRc4ZrtSKUi5dk8x04iagTd4Dt32+nhb+No1Jlf4smnvQ2 RifCKX0GiIUg24KuGfmsZ9hEluac2QJ/NkDA1pE3KhIZtM41AHLwwC4SOUx35oGOvLeMp9Kg1Gsr UMy9Dm5rohEeaE3sdopERomMcGfamheJDCIxHKd+aAelz1C4cOHCs7t27bJVacewsLAwOjw8/C59 +9zMS4qjyaGTDSY8m3W/BtoyNauLByBUOoISxSPPaUlpkDYOBDmgzRJjogC9UxQ5gIU+lZfYQjaI +wvSgXCv0Y8WuJZEIjXzMQapwrkXz2F88lsMq6uHLLvbDoyPj/PZfcU7L+SvwPLSW941gRxIAZFu o75TZtSCfC9QPWBiDpMN0owTiICQMNMtLKlxgXVI6jMsv2w8I500lMDPFsDvfxDZkMA2n9BtiRaJ xOSYTSSSSr1AFwWyApsUibQsXfzkvffeW7VW6BpjcnKS26+SJ1MszEBu+a1gMhm1+wqho5ENahsb LBJpTecENPhnz2N43KznKPoMNv9khfknzu0Z0RfYdv2+x//Nrwvb5IPzPuJcc1CJhCCRyOhRmoJg yMD0zo/AzhvucZb/DEHXEgwCyWTyi+zjvWt9HasBay//kH38xFpfx1qir6/PEHtbyb8JBlEWNImo EXdBUcpO0+21N7pIpN0X9InwAUKfgeFIyysmRkw0tAK7CZGlcmkBckvnvLGG67DUIbgjx50dJhs4 mhWJxARDHXxnWAzUhsYad0Kp/MfC8nF2SVWyI1dCI23kSMIXiaRmDThaKRLpNHAeLdpKkcipzebA iOHru3btWrFWaAcxODh4gH0onlohfxFWClec7xTZ4H2T5IH4XSEV3K/Kdq+kQjaYUQvqYAzPzurR L4CuiUxp8AZ5NXl21YHEs8R4JlaO9wLIAajrxxPjFe8Y2KlWZq0RoaHbO7jXS6UmiFk0ke5ApTFQ xIQYNFHCj2Iw678zvu0n0H46MQFe/diiK1Q9B2iZSGRvbxpGxm8FHcxpfjRIW6AdoPUZXjTJNPGM +PMl0m18qPYYJhLpGzUVtUDXH9/Wm8xC/9CNxv2Uy+VH0+m09X6pFZQKXug5+g8wkaDrbyjP1nvJ OiESGSn1QlSZZudBZAR4hxqjxUk7Tn41Ajq1049iCyWTNb8lVCTSIrQYVSQyk9kCfekp/WJKMzMz T4XlT1v9E6EfBaI9wxEMuB03iZIgkUhFoNH5sYG0zAYmOHpSWdiy/SOwbff3QqovWKMC1gHBgLBz rS+gBbi41hew1mDvh+H8rkghyMYmEf33KHiCT5DdukgktTqZToQPDu827oELQXbLynAbCTHR0AJQ IktK7qNwdjSywQXdkVNkQ6tFIrlI2NBI4448lf9YWDoWSHhw6FEHRllENtiUlp2/9TQJS0cepVHj TmQtoXbq4rjRcihVx2Fys6nP0E0iYZQ+gx/NgA3W+6YQDnaywd8Ayr6xSCRAqEikJTVBtWfvWlBZ 6+oVoM7QAmiza8o7o83mEsSEEZIuSQXsYOtEiPoO+zahD4p9wkZPsRgZu5Udx9QWyGQyr9Z8wYlO wRioXbl0WCHYOOTtOZWY8G8VDbptUQuCSGhWJFInvHhdDzj6O/78rIcz6XT6jO1Gjx8/3nfrrbca q9LkeWocGoPjiAoxrtcjOJRnq5F8oSKRwpYSvg1Ku/MKNisSCZ4NG7oM/sOykBE9pDgps8fHulyf wfBR5maORPBFzO2irGjvxXNTJhEs6ZyYVKDSOZ3jsH/DY6TO0XNR8qcp/yTP/ZO6H9FpRK15BIMu EkmtSCGIbo6oIpGhaZmI5NV9kVTfAGzZ/i9gy87vgaS5pKoOfmtcg+HfrgOCQWjBbFnr61gt2HO/ 2C0+3lqB3f8BfdtK7oxsvyFkElEn2By/y9mQsEYpS9/SKy865LDVyfizGhrZY9xDtVqNiYY2ICYa WgOzE591xfVE2+M6NahXTtg7cn2GARMOQSKRgpmPKhI5NHorJExH/m3myL9ic+S9/Me79O25xaO+ wxFEeATkRQrRPFEuKBWCEnPUO/KokRHCidRDHBvLoXQdh8nNZLhnN4mEEbb6Eml7Ping/mYjI5T9 NDKNsmXfnhGRoKc0gFZGG/ArgzWNqZaDPEQ2qORAXUnfUCIqQCUbdHJAnJuKqAhbupMkNBKe6KTj YaqpCeiGlBBx9/31y25UkcgJegnBQzWdvWgzFhcXx4aGhu7Ut89c9hT75X++fcsBthwUg5VsEANd 9Jb4Ng80MafYB3Kk9DSkoVFy6eJDQfd70003cS2KfrytWlmAYt5dlcYaUeFdWxSRSIpsUNqUOoBB wEnb9X6nIhUkVi8SSZERA8M3QG9SqRqO+UceeeSlbtVn8NLl9unbuT6DQ5Citp4mFdztLlonEmlL 5+RtxsgE+e5H1Wcw/JP84jHZTouITvlwFT+peZFIHEHZjEikLUpzeOw2GN/0vigkA8ebrH38z5xk iFJ4rXHbbbdtA4IJXW/gRMNaX8Na4vHHH0/eddddhnhwbumYMqlnRBDjyQpLBDF4fkVQlLIgG7y/ QPaLxMQTLzs4tJNqxxc+97nPnYqXeG09YqJhlfBElgyRsPmZw+AznFoeaj041NyH3+lTZAOHjZmn ZoLlihDeQGyYSJuAEEf+vvvu4+FRY3hbrVaAldxpUAd9IYRHQFnne2L1IpFRIiNWKxKJSYyh4Z2Q Ths5k/mzZ88+t2ePyZ52Gvl8fjqbze5Vt9YdW+WwkQNimyhDkRHKfohM82HasjKrS6U01H1bwYOx qCKRwcJA6iyxspoE+O+UTg6o56Zz/0iiJIIORCwSqdbh+BSpzxC47G47MDAwcAC0dKPc8gVYKcxI 408ggk0SrmKAjcgGaZvIRmxRC5hsALzNG6jjiAJMNnhHdZ7R0CgZYRVYh5Q+Q2HpZfAfHx1R0YhI pB5R5NaD2ua47zq2JWy7oEQq+HsI2/WKioG0uCTR/ya0SB6ASCKRo+PkALir9RkGBwf5wNtIlyuu uOlyWHdB90XI9l0jG0SbrLbr6iRCoyKRo7Q+w6EI+gymf1ItQGEZ6UdpfYHpJ5mTITpRQolEUhGU rRCJXLz6DXh59huOOOaWnd8LoxPvDqqCXez9/Ud2rC9cuHDhV7plSW0b2PPcoW+rVnKQXz4t/64b X3zUtW22slLWtU6UjbAdbxufuAV6etWIX1bfb5lXd+1g//79XPdLYcJq1RyUHPFg9285qVerg7LM fD1kEhERdxAQpSxIfjMq1fQFh0Zvom7jG50Wmb5WEBMNqwQpsrQywzryt6yDsh6NbBCwdeStFInE K1KMErMGYU4olf+YXzwO1ZqrzxAm/CgID9fRCy4rRCKplAVjwI9JBeRERhWJFB087+KbFYmcpPUZ vrZnz56itUI7iEwmw6MZlIebWzoDlfKSHKeoj96MtAEIJhuU/dyvgbasz+oaKQ2InNK1DzaqSCSV miCdckma+QSDKEsRE669u/ZsCD+KSpHvjCAR/LIUMSHKUtEVYtCmEiF+dEVUkchkMgMjY6YzUC6X DwVpC7QDVH47j2ZQ3gs+8CDIBjyL2lKRSM+og0Qi+Qxo/+B1xv0Ui8VD2WzW2C5A6TPkvYg1TP55 pRWSoxtFIoNSL9BFgazAAJHIkQkzQmQd6DMQaRMvGW02XmUjlExGQy+F0FHadeebjLbUoxsN8tf7 PjSyixI5LJw5c+ZrYYQ96Z8s8WW3XX0G27Lfjkkb0Re+7VJEiVNrCcJPANVmQScVUFvdiEjk0vwR WJw7ApnsDpjefS9MbTnoNgAm+A7/etu2bR8qlUr3Bi1ju9ZgtmkQDfw+Tx170BAcddufOvoO7mtb V8VJcRmlLLg+RODxwNxW18p++Pv+Evo0ooH1S2910apiHQd7jgf0bbnFYwAWUs1JWQZ6EpF6FyRx V6MnY2wikX6/6L6/og8YHb+Zuo3nWlwtMTxcu29Gi0A5ofMzXkhtQOcsnR3knNrK6jMMGM2KRCaY Iz84QjryYSJhB/VtywtH5dgqkvCj6LxrLsGg50UqZYkwqSj5XY2KRCrfvYFV1BxKcdyJKZK46Ron lF2Hoc8wPyu0RNDoyEIOcOCBkSysOZ3KfsTxvJJKh6/P6horXbfTAAAgAElEQVQpDSh0daOLROIV KYLZfp+MCF29Atkzns11Q8s14ccAAo9cvUIhFUxHQFYrGghiUCKRY5PvYH8bs5dnWdt0Wt/YARgD tdlLZhsvyAb3B9XRBTTIwSKRmGzwShtEQrMikW7ahNH2vJrNZq2zb94KSu/Tt7upcSb5FxRRIV6V VolEKgQcABmp0E6RyAR7GEOjtxl1Vq1WH+ui1DgKhv367b7WNgsSR27XfREBs1+gVqRw26Hg6EZB /opoS0vUyDNRCHvaPzmmtL3O/WjLfuPmv9UikTjXPHJaJiJ59QmOlcKbcPr478D51/8Mtl3/g7Bp 63cA8Z5z7E2lUl9j9vlDvb29fxtWd2sEg2goFWcAC45yWP0RABApT1EicoKid3xo6UOye+fPKQV9 aUOIs/rcc8+9feCAMda+ZmDTbTN9c9+PAYpgs7wL2B9RooSQzyPOURPvG5oo0qMLR8ZuMe6hVqs9 F+sztAcx0bB6mJ34VV1kSYBqwBIG2UCV1WcYMGwikb7wkTkTPDx6e8OO/EMPPdR7zz33kPoMOuGB ww8DV8UIyIuU95EIF4mkxBxtHXmzIpFBJAY/x8SUOdvVZSJhpMPJEZUcEFAJB8pW0X7IefV/V21Z 7CNmdamUBnQENBjDA350DEok0iIMJI/nntAQiZTBDgQ5gMkGMbgXs9ZRlu7EhIZi7/yQltQE1Z69 a0Fl17NIpCAbKNIOIuRotxq5XG5Tf3+/Mbq8OnPUt0hs296Lg98hZ7swt7o7yBH76HoG8tkge0wg u5EmndCJK+/sgpgDq6BeYB3u3r3720BbQalanmeDm/PeudE5EPmn2HECPU8wSUOxhyISiSKKbCKR hi0RkQpUWoQPr4KJ1AsRDeE9QclFYDsfGL4RenuNSJC5Bx988HC35vV69muoVy5cdVP4w8gGF/b2 nRKJxCtScEQViRRt9uhk45GWHFb/ZOGonNRQhB8lwaCKRJrRF+ZkSBSRSD2Ckh+8EZHIoChNjlLx Erz+8ufh7Tf+Gq675ScdzS0CI8z/+Cvmh/w0+/yDwApcA7B6265vKxevBBBf7nbF7pwXtrGInPCy NNmQ7Z+kboOTDJXV1MN6hk2fgS+H7LTLlqgdZ5n5nrq3JKxn/+D7ErYIYr6DspRsXT2HsiIFKi/8 l2RvBoZGrjfuo1gsPsfayrbV07WMmGhYBWwiS/NXD3vOWHjn7Do1yCNN2MvqMwyYcKBEInVmHs8q jBGdOYSIhN19991cEE2hc3keVn7ptDHAU0MM7YRHFJFIodDfzSKRfE1eYsmp3MmTJ7+xd+9efXvH wRrRPX19fbvwtnq9CovzR+UApxFyAM8+22cG0H4amUbZsm/PASkN/pHRYMwuOCYhBijCODVyQAz7 KZFIrNGgkwO6QKWqA6EOsGxRGaQOROLaFIkUz2xyE6nP0PHooGw2+0FQDQ+WFs8yJ3/eb+MBlHZb Jxvca/f+AUCjIpE4akHaPNDEHH6mI03kuVP6DDlPSM83A2yDAmZERUMikVpEUbMikda0CAk0eEGp F1FEIkfGSGHNJ7o5r5fZ70HQ7De/fA7KJWS/xiul6i5EIpO1sqKOMdEm+tWgNptPfowR6SnMbh8N I+xp/yTP7vd17xg6UeD5Et69Cp0InCLnR1/UDf9AJ0p0kUgqglIXibRFLUSd4ODf88un4Ohzn4Dp Xd8Nu278UbbNWDGsl13bf2Z12Mfq8HcDK7HzMImG0qzzaSe+vO0OPLvTUp6cX+pE+4H3N0gMk2wQ 5xB/9Q8YS65yvBnhPjcs9u/fz987U59h5SyKBLZH7ThRRcQkIuWX+3977X9AlLJ4lqK9ER3y6MQt kDBTjs709/df04Ke7URMNKwClMjSSv4tKBZmGuqcxYAi6mwyPi5FNnAY+eR1l5kXM8EU0dCMSNjy glif2s971wkPddC3epFIIDpcvZFZrUgk/g00UoGajRifJIU1n9m7d2/JWqEdRCqVMtImlhdOQLWy YjiaUcgBimwIm0XQj+ftadiynIlMoEEWTmmo+7aikgNmiDn2UMQgb72JRELCTE0AeTxhs2Ls5Zel iAmQ1+tvk7O59br3I35nBOFgJyZEWSq6QryXJhGiPn9ZK+x7Oj3MBnU3gI5isfhokLZAO8Ces5k2 cRmnTajttoB84sjmxW3qYZxueYDViERiYo7/zHPcswNGVHItn88fGhqyq9dT+gzLXtoEIIINRy0o d51Adoy3Ee9xQpoJej+0iCLvmgDfsPuuY1tCtivZAdP2XTt3/5YDaXFJoEZD+JF1IO2cWsGjm1Lj KFDPU49ic9FsmHnAIM1CNiQSRJvtHWtw+HpIpgb1S158+umnvxkWmk77Jy9DtVqTz9UkCjz/zIt2 iyoSqays4dcENCoSGRa1oPsiQVGab7/xVfZsX4Jb3vlJ6t1nl5X4Qq1WW2H19EeBFdlZGERDpXTV mPyQ7yvlV+DtSHPIR4AfbpAYalujn6N/YBN1D9c00UDpM6zkjjt1rLx3zi8BEcSgvaOEX65HRhhR Qugdw2SD3z3UYWyCnPh7pj21E4MjJhpWAUpkSaRNBBMFZgMmRa8op9XSkTcrEpnODMPQCOnINywS tjR/VHGc/Xt1v8vTRxSJxGSDrSxekQJCGplmRSL1CAZ+f7pIJCYxxmnipmucUGrAtHDVXBklKjmg d8YAwWSD3E8WhkBbFkSBIBKMlAZETl0LIpFiRYoE6MSYFrILPhlBEROirK6ZoLwn2uwQFokkiQlq 9QqFVFDfUZ808QkPTDZMbGpcW6CNMNq8q1cOy1dAaeMJYo7/0YhIpK5nIAb0jYpEWvLcjwwNDc3a bvTcuXOZnTt3vlffnhMaPOLdq6vvjd9We9cBXp3IZgLdk4xNt78f0vwhWCTS0AYRgwYUqYDttRGR SCX1gh+2txcGR00HdT3qMyzMqamdYW12syKR+gBRlANQCQYc3UitNMPwZJTQdCpPnPsn4jEGEgVK tBvWjAAi+gL7NypRIu6/UZHIyNpSoE5w6OdYyb0BR5/9Bbjxjl+CsUljdQpONvwes9nTvb29h8Lq s0PYpm8ol2cMW6KJL4vdoWhUysfw93O3Yxu1l3XP0d+/mbqHN1ZVA+scrG4O6NuKPG0iAYYf7XYB 2MZ9+xcrUhgRxJbUC0GwKVFCgN4x9F445etuvzBOEA3s+M90i6++ERETDatDwOBNbSSjds5RRCIp EgOTDRyUSKQY0I+O3472lTjBHPkLthu15WEtzh8Rvhioy0CphEdUkUi8IoVNJBKvSIEHQFHyu1op EinOwTeP0uGeXeGEemuLE6TYYTkWWA05wIEHRrKw8Q6g/YjjeSUVp1TM6lIpDXLAgHPYvQE/nvUV AxRdJNLv+MTZ68p14IGbMjgSt0aRA8q57YMpMTDT78+mA+EO7OypCRtJJNKyekvHHeOVlZUd6XT6 RnVrDeZmjriPx3u04rHaooAE2SAKK4Mu8TwTCU/4UbVvH8gekd3YRCKHibQJCKnD7du3c5Ihg7dV ynNQyF2QzxSTBnrUQlSRSJ00rKOfMNkg+pQEiPZJs92Ebku+I+vWA5BpEf41uieNIhLZP3Qj20ep Go7ZBx988Gi36jMUCoXtmUxGU3yuweLcMaBTO+1tNggSx1LWh3ncRkQiLYLKofoMnn/yAX07X6Wh Lu1NHhFooqAOWCSS0r1ajUikHkHZqEhkUJQmPke1modXX/ws7Ln952Fq+qBeJSnmk/wla9v2MdtY 0wHyCy+8kLrzzju1kXsdyl5Eg23Aj4kvH1pZQHVJ+BjKGTUbpc4tzpElIhpYubPX6iDV8y3369tL heN+lCNoq0kA2COIvc7M2C9B+PuaP2ITiVQmFFknOz5JCvo+3Q2++kZFTDQ0CZvI0tLc0VBWlBrM NSISGURiYBiaCd6A3jJr8GjQ/e7fv59rUQzjbc56x0unnXP7yv5+rqM+wBOzCkHCj1FEIrFCfytE IhtZPpMSiRwcvs5ZSk7D8pEjR765b58h4dFx3HfffXzUoagY1WpFWF541R0LSJ+6eXIA7yMPFTCL 4G8AZV+bSGRgSgPKk/XJgbok1sT1kCkNnt2qAyKNbPDYCKxSLgYyBjlgnBvrQAgHKDwqA59DsXcA kCNLrQNWHVNxMr9sN4hE1vDxFdLEJxumNt8JOniOdqcVofv6+gxybnH+FJTLOfmqeNVukA3gbRfQ dRsMsqHuDnIA26Z3EP+Q2L4hUCSSWro4rA6pFZSW548a740yCEfvTStFIt1KAvSSqakUUUUiqbQI bOfyPjwSWbzr4gG7fRidNsHweDfrM6TTaeN55hZPQ6W8HDDwaizMfLUikThisae3B8YmDZeKDwIO hQ0CbP5JjutHeX4Flc5pEgW4rBb5BgA4+gJPhoj7CBKJtEVQ4vDvKFEL0aI0a3Dq2G8755/cckCv rglmG19ig8TvWEv73bt37xbA/A9wYnOR3ZwbvBJkSybxZZYVLU2zIpH4/RBl+we2GPfBznmu2TpY 72C+Je9oxvC2eq0A5ZUzbjRaIFEWEEGMRCKD/HIOQVQ4XUWPKRKJy/GUzGTKEHyc/8pXvnLs3nvv bXt9XauIiYYmQYksFXKeyBKIXyyNZNBgjiAbxG7WBhU1nuJv//huc4s7y2aWYaTyHxfnjzEnwGMT haPnsRrqDLJKeAQJP6odeXBZIZqXSPgNCdWRh4UfNrp8pi4SOTpBzh4+tW/fvrK1QjsINrgwBkxL 8y+ze64ok+9uNYc4j+5XCarjDiIbjP00Ms1GNnjf7CkN/pEROaCHvHq/4781uzXJAV0Hwh8cYY0G KzkArReJFM+pUZFIipgQ9o41E/CxeoAWftTLUiKRkphAA0El7cO5zwQiQvjgaByGhneChlqhUHhs cNDI3W4rqFQxnjahzAZrZIO3J0nM6WQDB/+tLqrCa9vq/mGkfWOyQdijH1KAbJ4hO7AZMlnDIa4s LCw8MT4+HnTLB/UNyyhtQrlDRBpgssG/cAF7uoV4WdaDSOTgCKnP8Fg3z2SS6XKR0iboNtsniKKF pHtbSLICkw1iQoEvOdfbS0aNhK7qYfNPhP8gSAOnWwAIIQoaF4nUIy+bFYmEiFEL4rsgef2/8Tk4 2fA70Mfa1GFTyPTgpz/96f+Lff52YMW2Eclk0kibqJSvmu92iC05vxB2J3etUWV1m0fnCiib7TfF IGu12rlrdVlEdt9GH1kqvMLqrOaOC2quX0BFAlMikboGmrIfmH65SbDhtCTzfZvaTKYUPnXvvfdW 21hN1zxioqFJ0DnvficuBiW2RjKsc/aPEX02GR+XIhs4UpkxGBzepV96PZ/PBzrylNO9yO4XD5TE OthU+KFwVKlZBXEflEikP5ERXNY/B92RU/ldekfeaGQEeIMpSt29m5xQdh2GEOTinDpgEuMEMYi1 OZoOQsgBimzwSpKzCPrx/HPVZTn/0zsAkdLgkgPeeYCIlEGDNTwYEoO89SISCYhs0FMT9LpzQnl7 Btm/ASgV37YTE/K+/G1iNpcSfpQkBkFMkKtXGKSC+o4K0sSSNnGUtU0z1A9thtHGX505bLa/wj69 qqCIOYVs4JuQzctBlxhgW8gGuSlh2iMmG0bptInnx8fHF203ev78+ey2bdu+Td++OOcug0i9N/L+ EcGmEBCoTKBIpEYaJqSZoPdDS7dw60EbkIgKbbFIJH8iA8Pm0oHrQJ/B6LOX5nQNKTvZ4P1qlG2X SOTEJnIQ8FiUWXdKn4H7Y857IokCNYItmCjw+j8kEknpXilloTMikY1EafLJhBOHH4Q73vvvIZ1R w/7Z9fwb5vf9WX9//9th9dsOsPNv1bdVQtImdFsS7yuGUVbG6vsEgncFgG02mMRwy2YIooHV4Rsj I8aKY9cEqHFQKX9M1hcl9mgSZSDL6hE8jYpEWpeS9b5PbiJ99ce7xVffqIiJhuZh6cT9Bq7HGy+E deQYelmZh6rNhFFl9QZaJxv435b16bkjf8V2o14unZGHNb3zbti07buM8gntQhPGF/t2tR+wH8No FrSxGuh/1vFPyh9qcX1b3fgJRH0LZPoNYh66RZ/Be3Z36dtdLRH+TSMbwBvQJnz7bIYcEGUB/MFU ozoQPMStXMortqyQDd7gQReJxNoHeqSMks/uOaBiFlXMKEsOI+GTA6YOhLhdb1CFHFBMDihROl59 GgZPDMz8+xMODzoHIhvCRCLr9V6Y2PkLMHPu190oDAsxIYgVXTOh0yKRUzTREJjW1Q6USqUbU6mU It3Onfb52Zc18gDZNJhkg7ej0W47z48gG+QAWwyI3MMZegZiQK8vbck/xyYbr8Pp6en3sY+0vv36 2+4jy+t9kfGbZYPRXFD9hLaBPI2+kWrzte11qkSdbv/x10Qiyd5po2qupNPpY7Va6Bh4TVAsFm+g ljPmkWyUqJ4LauBlttlie6tFIimSMYqgsk0/amH2iGxa1dUkvAtE6ZxWosASpSna5tWIRJLaUrxQ C0QiMaFRrSw5aRS3vftzoL04Q9ls9rPs8+OBFdwm0ETDLGoWgiN3xTbRr4XaXZMikQLJ1AAQS4fm R0ZG5puuhHUMTzzYGAeV88fISBwh9ggkUebWddB+ClFRJ+xfm1A0RCITvTA+ZaZmsTb8iW7w1Tcy YqKhCdhElpYWjjnfTKJA9FeNdeS4bKtEIqn16SHECb3jjjveBdo6uRx9GXJN4RgAS08//fTzYctx dQLs2b2HfSihKtzxKOROIydTs5eESza4dtYYOUB13M5W5Vz6O4D2Q8fbsvVboZCfhdkrLwO2ZUkU gCWlQcuTNZZIFVeiOaD6jDKefVUic2TEASgRFfLWEDmgRyL4rBdNNrjkh3l/Nh0IlxDR9Q78Dnhs 28+yQVIf+7soHehmRSIp4UcOrK9AiUQaxAT4kRhyNg9cZ5ua1WSOwKFOh6Ymk0nDgVqYOwHV6orz nSIbHNSh4yKR+tKWVCpXM/oMHJl+I40lhovHa8Ib7kKkUiljpjG3eJLZgWe/JFHg/BI6uPMhXgCz LNVfBIlE9vb2wfikqQZfqVQe7eszBncK9u/fz5dXUPwTrkORWzoDsr322ml/NYm6EsHmXRXQRAEu G00kUhwvSCTSFkGJRSKjLm0pCV+tDRbfl+aPwdtv/jVs2fEv9Or7sWKx+BvpdPpUYCW3AawepvVt buoEoGrEJI7cM9CWAu0OUF1abF5AJzH4sssErBN0Gx3bt2/nfYYieFCvLkKtfNaf1NBJBST2aBJl YI8gtu1nixJCkREiSmhkdA9rF8mlc1/oBl99IyMmGpoAJbLERRGrlWVj9lbAn3WKEhImYNdtwE6r KBtEYghQswbNOqExrIi0HFcnwJ6dkTbBl/wSRmGzQ4psEAgiB2wdt0o4RNOBcEgxNsriREMsEukf T5wjTCRyeOoeyA7fBcuzD6lRBeLeCGJChPfWPCIlsvAjQUzImTidmABQZvDE92z/JugfMH3PpaWl J0ZHR/XtbQUVEjrnpU0Ic1D8YGzT3nsjuSdENoCyj3vvoL1DAIhs8AZEgG3TO4h/SN++B4a2Qzoz oV968fLly89MTxt1i3EwrE5i+Oim1DgKlP0uzR8xfQaDKHC3U9pSjYhEBvYXWp/D272Jqb2szUjp l3wxk8m8GhY1QukzLFw9ClU+YBHtP0kUaBFs4JUliQJcNlwk0ieN3ZtvViQSjMGYKRIZdSnvC2f+ DCanPwjJpDLY6u3r6/tF9vlTgZXcHhgNUrUyL+1DdJu2ybQgwVGAALtztoQLP4pjCBKjN2mICHIs NHHfGwLsvftefVu58BI4vVoCQBF/1sQeITCdmY7aEfsZpAKY9q8vK8vfo6ktpDD7493iq29kxERD E6A78aPeb0pJgiggtntlo3TOmGwQu0WdjeCO/MCg2baHOfJU/mMMO7rJCQ3SZ6BmWRVRUQBlRYpG RCKpjjuIbDD2Y79xUiydHoNjL/wnqFRKJNkgzhGLRKoikZnB98PAxA86t1I2ciY9wiHK6hVKhQii wCcYdJHIhlavQDN4/Lsl2up51jZ11JljDlSiWq0e1Le7RIP/7Dl8Ms75y0o2eKVJYq6VIpFjdGrc 16enp/O2+7148WL/li1b3hOlbmK46GZ9Bs9+P6hvd4kGc8BmEgXedgeNhZlHKSuOi89lSZk6FCVq hPJPhkZvgVve+cvOqhOF3HlYyb8JpZVLrKmpaEQBLRJJEwWqSKToP1YrEknlmov2OIpIZJSlvJ1l LyvLcPHsQ7Bjz4/q1fWxXC53/8DAwOWwum4xTMXa8pxio1REMGVLNnu22p1jsFRZ/RwCCUj2GkQY R6HJe1/X8FJy79a3l3LfMMgBKhKH1z1eWcIkymhtNSwuGVW8ve4Z0OQmczUrdp3/2C2++kZGTDQ0 B4JoEE4oRwDzisiGsLK2RtLt1KPPJottls480JG36TPEsKNb9BkuXbo0sGnTpvfq27nDyWGbZcU2 JMaMYhDbKZHIbP8kDAy62hfTO/bD+bOH0Lnqspz/6R2ASmmQMEUixYDfHxxrZIM3o6yLRPraDmZE hSQKAAxywAi3TQCoOhDqrDW+dhyVQelAgEc2pLK3wNCmn/F2K0O5eALVt+iAxblcJ7YbRCLH6UHy IWpjO1EsFvlC28r67rVaCRbnXnW+2yN/AJS2WtinVxUUMaeQDXwTeoeEfTciEjk2Sa4o9GiQM8Xa CN6+B8enx8C4nE6nj3exPgPPQVDst87sN7do2q+dKLANvCiiAJSZ3ygh6fpxp7aQg4BAu+Ww+Sd9 6TGYmr7L+ecfrwqF5XOQWz4Nefa5kjvLPnkk6mJTIpF4RQqfbfZHx7alvNEdSrJBzzXXZ2pXKxIp znH5rb+Brbs/Cr3JAVxdmWw2+6Ps8zcCK7v1MGe9ynPOp24fOCIY257VRgnyzChLiETqky3+NiDI OHlB1xze+c53cnE2NXe6XoJi7kWnQgzhU9nnq6SCcIpoogzIVAjrfpCwpl6kUhkYGSdTs/4xLDUr xuoREw0NwhNZUhNXWQeWWzwuncOwzln0SbayUTrnIJFIG4nRrNAaexmNwWoMO77yla+80g1r8k5O TnKBLKUVLZdmoVi4gOwrnLCSw0XMIticUo1sEOfQO24ACHhfeIqPP2Daufu74MK5Q/S1UWSDNzJW Uhrqfp4sJgeoFSnqwnn0rpoSiTSWbwU/okIhCpADKtZ4ljwIqCKROH2DGkiq9yfZH4XQ6O3bAkNb PsE2uLMv5ZWT7LeK8rwFWQIgIiJ8zQRdJFISEwCGSCQl/Og6vyrZIIgJWZYiJlghimgIS+tqB6jl YBeuHmfXWpY1QpENDiibBpNscKA5w3XvxWlWJJJ/UmK/XOMiiPjM5XLPs4GGuX5jDBKsPvPdrM9A LTm3vPiqa7+oHdDb5HaIRNK+iHqM3mQWRsc1ySuGcrl8KJ02RDgV3HbbbbvYRzawkLiSRC/0D13v /FPOU5yF3NJrzIc74UwYFXKnwomCiCKRQctzi3qhVqQArT0W4d/Rl7ak0y3qtQJcfutvYXqn6p+w 8/84ayN+s8N2vVnf4EY0yKsChdCS3WEUHZEGyDMttU/sT+lAxHDBbOVH9W3F3DegVnW1oNx/PjkQ tFwr1iQxiTIIFYlU9qvT7wKP9CNSs97KZDKvdCthvJEQEw0NghRZWjrpiIQ10jkHiURG6Zx9pteb 5Yowm2zRZwgUWtu3b1+ZfRwLrJQYCrqBZOCg9RkOazbCv9nJBq8kMXtrdzR9JoEmLkRZZ2uCdhQm pnxb5SH1/f2TkM/PRCIb3AHYtScS2ZMYgKEtn4REjy9aVVk55rcT3n0JIsUPb/Qd2gSoZRViog5g DdnVHDa8IkWU1SuyA9sgnZnUrNXRFng6RFug5UgQS/nOzR72fgPEvPl/iMenvkME2QD+Y221SOTg 8HWQ6jMEy3InT558du9eczZHYHh4+Cr7uBqtdmJ0O6jUzuWFI/Z2P4AoCCur+i3yChQSzUZMiLIT U+9wSAANZ9Pp9Omwe+UihtVq9V7W130R9BnWiEilJ2CU/5t051PmrzwF58/8MVSKV0KIgjq0QiRS 1GEUkUhBVkdZ2tImEjlz8X/A9M570PU4uLFUKvGVZ55ppg4bhZfeYzT41YofXEtOvFnIBm8PkhyI RJ4BqkuLzff2kqSXNSVto2J5eXlqYGDgu/XthYUnnEkcvAoLadMJOhJHXcpSFYlUCTUwiApjv4T6 Lkxuehd1K3/XzYTxRkJMNDSIsE6co5HOuVmRSJPpNZ1WXHZwaBtkska7XmKO/FOdduRjdAwG0bAs 0ybcvw1SgZhljSoS6SN6Wo9q2/7vyuoDbES1bdeH4NQrf675RhoRgo53rYlEJhIpGJ7+BPSm1BXD KoWXHefUm/4ihR9FVAF2aG0zA+0SiaRC/hmeDdIWaAceeuih3nvuueeAvn3+6hH5mCVR4PxhSzMS e6J3xHtvJPdkIRvcou52/A4BILKhXvfyXEHW5/iUudoEw9N79+4tNVsfMdYXPvOZz/Tcf//9hv0u L6gaUhSZ7IMiCtzt7RCJxNFrCJGXtO3t7X1kfn7+0PDw8L9m7xPPG+csddO5i6NT74fhiXfDhdN/ wgblfxNZJFK09asViRR11KxIpC3cXAzyysXLsDj3EgyPqekqrB75DElHiAb2vMbYhzLFXKsV2L+y Uo6yO9Ft6v3/qskzZ4tbtka9H4ot+5fd8M2vc/T39/8IaJGytcocFJdfcr9rBBspfKrYuO9jQJ0m yvCKFJH3Q9/Hp77VuA+2/9/G+gydQUw0NACbyBLvxBMJe4cb1jmHsbRU50wfA3mk2gBvghZaCxQJ i7F+sbS0NDE4OGg8dJcUo5zL4FnWTopEZvo3QbZfjarcsfs74fVX/yLw2nSyQU9pkAM05YIwOaCS DX4dofJiIC6mrgiyQQy2hUMkiYK66oD6I05Qwm1xp5HL5YIAACAASURBVOySJiBnrSUpoEVlDE1/ HFLZ25Q6g3qROZWn5IAYazFg4UffGYU1E4kcnzTbpyg52q3G3Xffzb3vMbytWinA8vxrso1XiAJe IKE+e2dTHZCdondEIxu80mS7HUQ2CAIKr0hBtfFrUYcx1g733XcfN4JxvK1WLUBh2bdf3RzoSQ2K KPC2u3uFDO7c7W4bGFyWEoFlZQ41YreeztSv8X8LCwujvO9j+7+T/buFbRP/DPFBG3p6MrBjz0+x wfi3wLmTn2cDqXyoSCQWlwTwOWQsEtnTg0lju0ik6APcazFnah0iG9w2XZIK9egikXNXnjCIBoZ7 mI/7C52Y5c1kMpv0bdUyLRWmD/jrqJsOE4lER4lGnjkGSxETPr2hgVSI3KjwxkA/oW/PLzwG1VrF I3VMgs0QPkX9P/YrwkQibXom5H7gviPpga3MpzR1R5mP/A8jIyPtqqoYCDHR0ABsIkv5pVcDSAV3 u1c6hCiIVtbWoLpNIT2bbFF0P9RYDcRYL+jv7z8I2qwO12aolGbl0DBq+oOPzohE4rQJAb5s39jE rTA3+wo5A4wHvM5ATPoY3gkiikTqA35/cKyRDd6Msr8Oux+JoEdU4PQNOX4XDiio0Q5YM0LVgbBH ZQw5y1h+0Kiz8sqrzgwRXpFCaDFQwo8cUl9BIyb0spRIpPidEon00yDNsvynkXFzNj5MW6AdoJby XZg7BlxIDtu6QhTUzffJ+V0jG5TCAA2LRGInmQOn9EBPL0xMknX4aDcI08boDCh9kdzScfZ/lRyw BbXJNFEQQEx4x8VwB4X2kPRU3xAMj95g3AfztR7NZiNJLxhgg4d59vGY908in89vSafTnIC4g/3j miS3s3/cp7OqwY1MvBdueudvwuvHHoBycSaAKIgmEqmsXoH2a1QkEg+wjBz2BKiDOiL3fWn2WeDa YqCmrOxcWVm5lX0eb6riGwBrk8b1bVyU04ZEgra7VohEGu+ERSSyWlmhLm0owu1uGJRKpQ+AS9op WLr6j5JIwympOhkXpB8iSAUhHkmJROIVKSTBFrLfxNS3Ubfyda+diNEBxERDA6A6cU4ycGV3jmY6 clFW/NUukUhKJKxarT6aTMYmsBFB6TPkFtQ8cxvZ4CKiSCQiG1xEE4nUoyTENo4JOgQctu/+Todo iKIDgWd/5WjOGxlvJJHI/pH9MDT1L8n6KuVfhroTMuDefwLcOhfiYrrwox9JIYiNxkQiXQfZn13D WgzUihSi7NDQbkpbIH/y5MmvB2kLtANUatzC1cPYvKUR172XyPY+CbLBPTDRroNJNrgHVp3hunfO IJHI8ZEbIJky1nmff+SRR17oFs2YGO0HZb85HsXm/Oj+TfsX8gigt8lUnrut/W5UJJLrMxAjvxPZ bPathm8+BP39/W+zj//h/XNw/PjxvptuuukdrL88yK7xF4BYCSHTvwNueue/g5NHPgnllcvBRIGI itP6ArfvaYNIJFqRggNHLVD57GKQV63mYHnxZRgcUfta5g9yv6HtRAO7rzF9W7W6HLIPbXd4ki48 /bgxkUhMNliuryldkPUKNgb6aX3byvJR9l687fXnfrSPbRUWw6YtkTiq9oKeesERbb8xOm3iv8eR fp1DPMpsAJRIWG7xqNGJhnW4QZ1zO0QiB0d2Q1/aCBHKnz179tk9e/aspkpidC9MLRHHVtHAXA6C KJt0frCSDV5J/xABxEXUKAlR1rLMIWzdcQBeOfz7rMMvBV7btSISme6/Bca3/RxZVxzF/DF3d9Th u/6Tr8XQDSKRo7Q+w1Od1hbwlsp7v75dEA34vRG2rpMNDtAfkudytgeQDeBzSM2IRE5uNpcHZHji 3nvvra6qUmKsG3j2+wF9e97zUTCBZfdF+LfwPHcfDWpLadcwQaxtDw3oM6wWXhvzPP83Ozv7xfHx 8V9n338atF4qlZ6CPe/4NTj50i85If6BRIGSWkeLRGLBPNyftkMk0hYZwfWadKLB83G/0IKqDQQ7 jxHRUKsEEw3ufvIb2CKCo6QfRyXPcN9VKpJ6uVv4e+eJpm9o5PP56Ww2+3369qXZv1cnabRoH4pg iyoSKVaW0O0Yr0gBYN+vJzkAQ6O36ZfMJ1n/Oo706xxioiEibCJLucUjfocT0pH7CO+cWykSOUmE ojM8vWfPnmLU+4+xflAoFLZnMpmb1a01hxRzZ7Y155J/SYSk5xCzrO0Qiewf3EqtPuAgmRqALdu+ HS688RhJhODzeFepDMb0qAXRUWHtA4McUAb83lfPeVRSGhxyAJEHmgOJIyow2VAHJB8h9pFMSB2w SCS+yWR6M0zt/hUQy1jqqNdWoFx43a8O3OF70Q1Yi2EtRSKptIlGc7RbgTvuuOM97GMQb6uUlyC3 dMZ8L3SyARBR4PzRWZFIakWhWJ/h2gKzXz51p9hvrboMK/kzsr0UA10fjWlLmT5OQFkLiYGPYVmO teNL2jrXMjGxxD5+lg1C/o4NQv4L+67MzqQz03DdrZ+E1458CngqVZhIJF6RQpLIAGrEHDpGXexH kN9hIpHOoMr5MbpIJPddCZjTv+3BqL6BR1lEBWV3otvU+/9Vk2fg9V21MpRLc5DqU4Ixem+//Xa+ XuqJyBe/TpHNZn8StDSjamUelueflf4LJspwtI9od3SRSMOm0d/KyhIaUYZXpNBFIvF3Hs1ArGhz JpVKxSvpdRAx0RARn/rUpzj1roos1QqwwtdcBroTddFgR24QBbZj2DtynemNRcKuLaTTaSNtYiV3 mnUKy97Axxus6ByCMj3gI2iWtdUikZTjicFXn3jrzceM/YKuTScbAlMa/Lv2yQZtRQrxu5HSEFEk EqdvNCISKe4l1TcIm6/7FPT0GukGEqX8cTbIqLr5phqhUfPOK5+5Jy4GiGAQFyD1FQSRUlfLGsSE 8ly8Dh8RDFLV2yvFBxTDY+8wrn8ttAXY+cy0ibmj0n6M5lKzdYUoQNsRT9UWkchEIsneG3LWpuMa FzHWDpT95ha5P622w0GaCSroAZuNbKDKBolEpjKjMDC0Uz9prVAoPDY4OKhv7xhYm/TVcrn8gWQy yVMslGV8Bkf2wvSuH4K3zv5XyRnbiYJwkUhdMI8SicRkQ0IbVOmELz841nCoKTo5fpvOSd5i/jT7 rDjtB8J2rmXhpZm0E4a2Qa3amC45ZXc9iUbTj6ORZ+4TTkAhd0EnGri98MZ3QxMN586dy+zcudNI m1ic+XtfB8qzaWH/ouvBBIMgI6gVKThskTiuDhFahcKwb3ryY3TyfdTt/FVbKimGFTHREBGUSFhB EVkSCFdaxmVdNCYSifcPE4lMsJHG2ATpyMdO6AYFmaerpU3oZIMDNEur2mTwLCu2Q3X2NjxKQicH LMscSkxu3gfZ/gko5GdDr80gQur+uE0lEkBNaUAV4pMD3SES2dvTC5t2/xKk0tsD66mYO+redYAO BGhkg1X4EesraGUNYsLbO0wkUnzPDt7AHDVDW2DhkUceeb7T2gJUapyfNuFRUQnivXB/UMgG90dQ yDthXkFkg1PS+04Rc8r7yzexDRNTt1JrvF9Jp9NHa74KZ4wNDsp+80tauhyos7nUMn5ku6/5KKJN wog+uHPLUqK/DEcHBwdnmqqAFiKVSh0tlUrfwT6fAC0Pf8uOe2HuyjNs0Hna56EDRCKdgQ/4kW+N ikTqK1KEiUQmvAGYLhKpp15wkqGYPweZAVWMk7UbvBNuK9HA7sNgkmpVUmwx5Dim3TWefhxOnold c0tnYXjsduUamB/9bvbx5YYvfh1hx44dP8w+1JVC6lWYu/x3Vl0GHJUDgCd36BUpwiJxHL/KCeGx 2HRCJSCSyRQMj7/LuBfWJz6yFhFT1zJioiEi7IM3elBGzRp4v0bqyEVZ8VezIpFDo3uckHMNC08/ /fTzBw4caL5CYnQzSCFIxbQADVawPQWQDeCVpmZZg8gGcTYMGzkwNkELQfroga07PwSnT/yFlQgR 14aveaOIRE7t/Bk2ODeJQx0ruWPewBd7Xe45dB2IBLh1txYikSPjJLHUcW2B8+fPZ7dt22ZMfyxe PaLYmFsfxHuBjLhRkUijb4BgskGe0jvnFJE2wXCoE8vUxegOeDOO365vz1t8FBfRtKVEWdyG0z6O Se76+4JxXAup3DF9hjD09fW9WqlU7mGDkn8CvIxhogd27Pk4nHjxl72RFIQQBZ5/FiASiQXzsA/Y bpHIYsEkGtixb2Iff9e2inVhEg21xokGDp1sEGgs/TgaeZZbeo26BOO920jw0sY/oW9fvPoUlIqz SOfKpssgCAcbGREsEqlH4mCxR9O+QZYdHN3HPg0Cfvapp556Mh77dBYx0RABNpGlwtJR53O1HTnV SK6epQ2cNXiCvWiVhiohxrpAqVS6JZVKbcPb+MxFYflV66y/O9hUyQYHpE06P5CzrIodikMEEBc6 OTAwvBP60oYYtYFtOz8EZ07+fwCaU+Cd0XptUUUiZUoDIRJprgoBaCAuohZc8gaLRLrEhEUkUoo0 iFEoyJc9gTrQyel7YXjC4DsN1Ko5KBXOen+p92fTgXD94M6LRA6PkvoMHU/rmp6e5s5iBm/j+biF /JvOd4psEKBIulaLRMp3i3h/LfoMHde4iLF22L59OyfJFPvl+dOllTdR20y35eZsbki7r5VtViRy jF6O9VA3zTYmk8kn2TV9hl37v8XbeQrF8Pg+Nth6QYlga1YkUk2R46jLYwDgcHPxm1+flEikII3D RCLLRXNxD3bcG1dbbxFgrF1arzUvGeY3ddFEIm123uMR7jb/fGn+Fer038aJavYOFpq+gS7Gr/7q r97NPm7Wt89e/IpPXgl7J3QZ/N9MMkIn2CibNuwbiT0CsXRr3Tvv6JSh68zxV/HYp/OIiYYIsIks FQtnrGxqIx25j9aLRFKzBrETunHBHCNjJLqSO8GeuduJB4nMrbVIpCWa4VVwOzl5loGhHTA6cTPM z56wXttqRCKNlAYUuqqvES1uRwyu/agFP1QWevzoBt2B9Bl+UNI36gDIOeXrub8fprb/r1T9GCjm XgYRMk9FZVh1IBJIJJIQfhQzDiIanxKJpIgJSPi/JRL+7EO9pxcGRszlK/myu2ugz/BBfZsTzcC/ EE1l3Qs5MGxPJxvA55D090knG8Av7R3U+5ZAx9De395kGsYnbjWur1KpPNrX12dsj7ExQekz8GgG ATtR4G4XgwIf7RWJzGQ3QbbfWEmysrS09MToqKETuKZ48skn/91dd931Q+yrIoSyZedHWR/0ghLB ppIBKlGwWpFILLTnNgN2kUhM/tpEIvnXcpHMkDCEM9oAo3HiEyKrBWl3iGzwN8g9DDunInVE2ZXC W1AuXYVUnyLXlpmenj7IPv921TfQZfCiGe7Tt+cWXoL88uvSX1DSgkC1Yz0qR1kSliDYbCKR1HKt UDd1GfhzSvb0wdCYqWvK/KKHuonIvFYQEw0RQHbiS15oMtjZVBvZEFa2VSKRPT1JGB0nRcI67sjH 6AzY8zfSJvKLR0wbESPthG97QSKRQek51CyrPVTcbvdjEyQp9t+8ezqIt2/b8Z2wcPUEBL5z3obA a0P7dKtI5ODQLbD1hv/TqBsPnEFS4gMLy0cdYiFs6U5MaIiBhhSJJIQfxWw+XpEC6mpZ6+oV4DsN osIGhm6mQhvXSlvAaOMX544E2LdJNkhotq4QBWg74qmaFonkIpCJHqMbP9/X13eyuWqIsU5B+ChH lb/t/oVtNrd9IpGWJW2fHx0dXYh0tx0EnwFlPtMnmc/0Vbx9aPR2yPTvgJX8myAi2DBpoBMFkBAi eTi1rnGRSGpFCkF0c0QVieT9TLVCLtm4uU1ViWESDbXWrBCp2534q1GRSDMa2d0+P/siTE2rbhaz jY/ABiQaPv3pT/P1sw2hg0vnH5a+HfZvlLQgsOkyuMewkxG0SKS6lKUqEqnrlQyOvod9N4Jm5k6c OPEPe/eakxsx2ouYaIgAUmRp8ShRzvnf2jkLZ97WwIV1zo2ytCNjzJE3RcJmHnzwwaMPPPBA6H3H WF/w2OeD+naxjJXekVpF5nT7xaMsW1ghESWBCTJ19paYRWCdx6hdtPRNdg7lvrZsPwCvHvsi1Kol oN+BaESI+Lsud8VEAihRBrhCfHKgvSKRqfRm2HnzfawMOTv9O+zfx8EgGo75swBEVIa8vx6V0MAi ka56t9uJt0skcohIm2B4rNPaArOzs0Pj4+Pv1rcvzB92PsPJBncQYLwX7g8K2eD+iA5ERv44Oypk g1PS+45/nyJWFGI41HRlxFh3uHLlyuDk5KQxfZcnli+0+xe22dyQdl/zUYSPg0GVpUhl6GK7TaVS f12tVrnTp3RSk9MfgjdP/bHz3YhgCyQKQkQiidUrxGyumA2OIhJZQ0QxKRJZmadud0u76hGhrTNd oi8OSz8O87kp8mx+9psG0cDw3cxP+bmNpItTKpVuZnb/OX17fvk1WJpzJ68E4SX8GyMtCOsyEEu3 CjJCSUlF741OKoi0H0wq8PMmeupeipD7XMe2fA91S4/s3bu31KbqihGAmGgIgVVkackkGjhW05Fj RGFew1jaUbozf+yBBx6Ipcg3ID71qU/tA20J1nptBVZyvoCR3wE7fylkg9xHzuN3TiRycHg3JFPG co25I0eOPLdjx47DzJH+j4DSl5KpQdi05b3w9oUnSKeCIkLEteFrjiISqaQ01NV0BGONaAvZ4BIT aoitYOx1kUgxKE8k++G6vfdDb0pZzl3gIeb4cvXk/xtvrFUW2fM+J+8/SlQG1oFQZh/Arbt2iUQO jpD6DB1P6xodHeX6Oym8rbhyCUrsn7h0uw2JzaZIZF2z9XaIRMZLF8cYHx837LdSugKl4iWyfFB7 6ZVYlbZUWJ47B0U08CVtuzWsmQ8g2b/fZ/fwu3j7+Kb3w7nX/l+NKPBGtQkIIQoCRCK1iDlK+6FH a9MpkUi8IoUgh7FIZL2Wo27Xvm5y62AwHL1JY8XLVcFm5zj9WLddkoBAZAPHwtUXgFgWdAcbmHOy 77mW3sQawRNH5kJYWlhAHS6c/hPp+3BI4gDqZloQ1mUwbFoQDmZKapBIJF6Rwp/wSHjvHUBm4Db2 z5QZYe/vf+nW9mWjIyYaQrB9+3ZDJIyLLBULb1r3iTLwabYj153PIJZ2bDJ2Qq8l0Ck+L7Nnrgr4 m1EHQM7Y8j86JRJpWX3gqX379vF4yjI77sPs82P4R776BCcaxCXR74t/n82KRBopDYiR17UPsEik fEcJkUi8IoUuEumSDb1w3S2fhHSWXMbyuQsXLvxvW7du/UX9Bz+lCz3khLgp1TH170+OiH32UhOJ pIQfxb354Y0+wSDKUsQE35RMpiE7ZOhLrYm2APXeODM2/EsC8B1YbEglGwwgWw8iG0D8jx6H0TcA SJHIvtQAjIyZDhVzeA9lMhlje4yNCbrdpydCBGztZfBsbkjbisoG5bln+rdCX2ZCP0jx8uXLT09P G7oNXYNcLvcXg4ODnwdE6qQzXGtiJxTyb2hEgTqqDSQKmhSJpFakcM6QUAdgQqdBrkjBCwmdnDq5 0oOx3nAbMKtv6EkaC1GsGr7tabYrqzFcJBJAjUauVfNOWt3I+D7lXGwQ+7/DBiEatm3bxid2jJmA yxf+ytUuInUZdP+GFonUbTqYjDBFIvGKFLpIJD/26Ka7qVv6Jns+j7W6nmJEQ0w0hIASCaPSJnRE GfispiMPY2l7evtgePQW40ixSNjGhU2fwV7e/cSz/jayQQDP0jYixKjbrJi9FQOtUUIIEs9u12q1 P2HvokI0TGx6F2Sy47BSuKrcD/2+mNdmC5vE+6yVSOTOm38GBunUgrP5fP67ucI1uxezbfLSJtTj gYyocOtAjcqIIhKJV6SAOp0HTIlE2lavyA7dqs8IcVxgbdMJ6qbbDJNomPdWFPL+kzZrsW+BRkUi MXlnE4k0+gbvWONT72DbjQjk1zOZzLkm6iDG+kXTPor3zdpe6rO5oW2rVpbKc7ekTTw7PT2dD73o NcTQ0NAsu8cnQWsvhsffydrdNwiioK6ly3HYiAJc1i3TTpFIp213Piqg9xUMGZ6G2c7IV3aNs/qE V6sjGjBIG7WQDd4egeTZ7OUnDKKB4YeuXLnyiampqeW23UgHwHytn2PP5sf07Sv58/Dm619yrUqJ 2sG6DD6JVgcgyAgiClSel14e04Vv0/rqVdi+0/07ITtsZEHyZ/mb8QTr2iEmGsLR8GyBQCc6chtL OzK6lxIJWytHPkabcerUqfQNN9xgrOeTW7ITDRwU2eD+4JdpVCQSs2c6cUGRDXywNDJ2u3Ftnj6D 8z2VSj1erVbPsK/X+dfeA1t3/E9w5rWH5PH9ewoXiQwkQtA+nRaJnN51L0xs+U6jPhgWKpXKPx8Y GLjkpXS9Ty+QXzjiH4qIqIiydCeAKRKprEjhsiXOAZoViRwYMfU4YA1ytBcXF8fZAMIY+SwvuEKQ OjElyAYHpH2bZIOERipITod4n2RRZQyg6jZMbCIHbI82UQ0x1ik8+71T3x7W7mPY/Qt3u2gDbL6I jbC1RUZQKZ3rJdKSXec/sOtUfMKhkVvgYv2rFqIgXCRSyUunZoPB189ZrUhkTSOK3YR3/p8aUn7w 4EHBrbcLM/qGZLK9q41QtuvatvjGEWbnLnk2f+VpqN34k9DTq2QWjExMTPwEuNpJ6xLMx/ow87mM 66/VinDyyK9DpVy0RO1gXQZ1MkUnIzDBoNq0GvlgkhGqTeMVKTj43yNT91C3dfrLX/7yw/fee2+b ai1GGGKiIQCNiCwFod0dOcXSjhJpE9DFYksxVofdu3e/F7SQx2plEYr5s6H7kky++9UfPGlkgwM8 ylJs0h4lIc4hhlL8/4HhG6A3OaBf1sIjjzzyvOgceI4sw5+yr/fjQtM7vhPOnnoIDfLwPeGXAl22 5dr0mWM3tBTdrCASxAhcjDxBK6Mx8v51aeXFMaSIEhs8bn4/bL/+Y3pdcJRZHXw0lUq9zP/Yvn07 JxmU+PhKec6ZdXDOh86tdPJ1z4kNicrQRSLFihStEonsHyIjWDo+2BgYGDgImjDZSuE8lIpXrcSU eJRrLRI5MRUvXXytg9nvAdDst1x8CyolcjUBK+z+hTmbG6ltDSAbRsbNdx+Tyt0Mdp1f0/O8B4b3 hKwmgWd4oSmRSKyfA9p+MlpBy30XAzNr9JlHFFMYGhpqayPCruEtvZ1KqktGtgWUnUcViURHgVp1 xYlqmJr+Z9rxEz9//vz53+cRh+29k9ajUqm8n9k212UwhAxOv/J7sLx0FnqEr0BG7XgEGxZ7tJIR Nl0GCCEjfJvGK1I42lB9myE7st+4L2Zrv8X8yKrxQ4yOISYaAtCoyFIQ2t2R6ywt1ZnHTujGBesg zLSJiJE3HGIwrNiT+1WiXSKRlK0yPKl3DqVS6Ut9fX2fxlc1MLTTWV1lYe4ESTbQ70s4ERIoEkms SFH3GHkRE9CoSCTvrAdHb/7/2bsOADeKq/3Uy+n6ne/cu7FNtSF0MBAgJCQESEJ6AULoEFoAUxzT IRAIkAChQwL8CT10QjExHeOCG7bBvZx9vt5P5Z+30krTdrXqkj1fIqwbze7Ozs7OvPfNm29g/FRG 2zGRLxI5izzjN/W/5Uu6FovkQPzabERFpiKRYLMg/CgRidTIBocXvGXjhXscHBx8x+MRdsnJKWT1 2NW2KF4tOhfEtxWebIhnpqBHeuRCJNLtqYDyyrF80SN9fX3v+P35WGKtUAxId2mnDGb9ZSxHRtpS mOIrHy0T/e1ZsWLFR6Ww7Vx7e/vnxC5kOnGfb6gWPRoOB02IAn6G14woSE8kklkHH4cVkUjRJuzs 7JQzEFlCOBzexBNLTpeg25ETGLXzhF/Mtl0jm7tp/XNQP/Ro4OpvxLBhw3Av6pvycjNZQjAY3JfY Fy+Tr8KMz+Z1L0HThjejbZFy+AF0YWsDgi0MzI4UPBnB7EiRhkgkv8tKoPZ44DhXxJZNmzY9PGKE VOtKIU9QRIMJ0hFZMoMVxycbIpF2hx/KK0SRMGLIv51vQ14hb5DoMyxM6QQ82aBBMmOLf5iRDTqM iAs+3SopRtru17E1sofS6cNGHgkdbSuEa7P3lD4RwpMNOpGQTZFIn28ITN7ramKwSvVTbiF90QNc muggty+Kl1NKDhhFVHCGaeL+4h4xxFiTuEGgmac2uUgkUJEUAKxIJH73le8GEoPga/J818huPscQ +viuti8SdIktCdkAURcq3yKRNXV7gsRBWOr3+7ekWxEKJQmh/aaybIIH31/qMIpOkNsi8bMBH5lZ VSONtJxbKtvO1dbWduJsPPk6PJ5os4Pb2wi93RuizqopUUB5tcmIAslssD2+T3B2RCId0YLytxme MWNGMHu1JqKnp2djRQVLOOUjokGHUTuntc6S6aL1926C1m0fQHX9Qdy5bZf39fU94fV61+XnbjJD KBQ6zOFwvACS3UZats2DVUv/rn03cvhpgkEg2KgdKXgyghGBlLRpczKC3ZHC7qwDX6VgEuEzvL0U o0t2NCiiwRxCy+1OcdkED6MOjsphOJDLnCRZZ1hZs5s2+HEolCGvkGNs3769vKamRrLEJ3VSjG5f ZksMdLIhkTlxglREInEmqKJKnMkig580lJac4xFSJoZoaBg+A1YuvZ8cMyhcm72n1IkQ/eZosiFK DpiLRNLaB8lEIt2eMpi692xwuaXbWD5zzTXXXD5r1qx4QlNTU9mQIUP25TN2Ewc5IiMHmGsbkw16 VIZ+f3pUhkwkkt6RIlWRSF+5VJ8h79oCxNht9Pl8U9jUCHS2f8E4/PqtRyESU9HfjckG7axZFomU LZsAtTRup0J3d3eD3+8XOs/ezsUZnZfuL7OtLVVRvUNEWq4GmmggcHtqoKdrQ3xlnQbD3SQiaYtE 0jtS2GR54/24RZFIkBLb0q0osonKyso2Up4Oww2LEgAAIABJREFUoJxbm82tkQ2pLvtJF0btPPEo kuuibVrzOFTV7U/yMKsNKoitfT+xX44J62x7kYLYWSeScv4DhG0sgYyDK2HJvBtJnmDSiBp51A6t y2BGRhjrMpiREfSOFP7qE0Hizra2tbXdS2zjXFahggUoosEARiJLmUQ06Eh3IDd1kqhzVEoGc1BG 6A6LqqoqdLy5JT5bYaA//clNgcmXhIdnQyQyUDGRF1RCtNxwww0LaedaR2tr69Nk4LgLqBA/p6sc 6hr2g62b51IFZN+VxD1lXyQyPskEieUI9DpZGSOvlwcFLafsdQX4y0YK90rwyZYtW37Fq3/X1dXh FApjIQ4ONENv72Z9jGfJAeHaiYgKvaasRGUAJEQi6R0ptLOkIBLpC4hEQyH0Gbxe7+HA9bJ9PWsh FOxMGOT6M4/9aURM6WRDNLOsDZmTDRps1kUiayREAzFq31b7hO888Pl8Qvvt710LwcGOrJxf1l9S v8adAjNbhO5b8Z0ql4v+vl0K+gwUNvMJLnc16NsKC8KPEpFIdoY3dZFIZvUeyEUi7ZK177xIpN0u jXDNOdEQw1fkw9jYbk9j3ogGHdJ2TpENeoKsnWNUQ/Pm16B+2LH8aY8OBoOXk39vyP0dpA7yvtlI +a4k/84Grg9BoB7D5x9eQfqSHkaXwSiiJr70xwbGkTiQG5FIh6sOPBWHC/dIntFfiK2Ync5QISMo osEA2RJZMkOywTnVgVw3Q3G7JR6louqskDrIYCEsm8g08gYhjZ6Jfk04TxzZoIEOf+AicfgoCdkM F8Eco621YqGrz5Kvv6TTh448ErZtmcteg7q2GdkQLzZXNqOwST1Nvz96Rwo6QoCpEN1L5Aboibud K1VhJ1jb29v7fdmWb3JdgSgBSms0GJIDkH2RSN0hTiYSaXeUg8s7mi9+QbQFePV4BOoz2GySNgQi 2aCBjj4D/XejNqSTDdFZGho8qSAjG/SreLy14A8Ia07D3d3dc/hwZIUdF7L225PBsgn5NbT/xv7K TFsKRRMdDuEdZ0R/SwSCEehw+mNjQoLEZYQfpUSBuUikXSb8CNZFIvnZYJlIpN0p7XPz5ZytAo5o cHmGAnQuzdPlE5C1XZ2jl0cVJ2wILaqhdl9S9nrunLZrQqHQMofD8Vy+7sMKyDgxhJTrEfL127Lf uzpWw7z3Z8LgQGeUDKBILLOIGmaJUIQl2OgdKczJCLkuA0NUcGSErwr7DsGVbevs7PxLZaU0SlQh z1BEgwGyKbJkhmSDc6oikU5XgBihY/jLKJGwHRtZ1RKhkXC6tL+MyYbor9KQcDOyIZ1Q2nA4/Ah5 PxmioaZ+H3B7qmGgv5W9hgnZELuaKRFiFDbJEg6xE6QoEjl2wkkwdOTRslvEbSyPNVlvL/RNncRB DkcST4I2QKXkAGRXJBIossFMJNJTtht3bg3LCqQtIBINuK0lfjEjG4AiAbi2wpMN8cwU9EgPKyKR 8UOp9ymqzyBgQUVFRX6nAhUKjbzZKHJnK5FuRVuqokpKKr9XgorwnXwCCtwm1o2zM7zmRIGxSKRI FIjaD4lZZIB0RCLtDkH7D9Ge/SqTYhWf4PEVTrRP1s5lO1JQR2j/DYd6YO2Ku2HC7rP5UzqInfIk ceqPdzgcr+XlJpIAy0LG2nvI10bZ720ty+Gz96+EULArOoFgRGIBO6EhJyOMdBnkIpH0jhS0vQHc 1q00GeH0DgVPxWHCfRC75g5cnpObWlRIFYpoMEZWRZbMkK2BHL9HHTfBkF9OOhch3E+h9NHV1VVf VlYmWHCpbsFqBp5s0CAJD486m8lFInXY7W4IVE4W0o30GXRcd91171599dVrydf41DguQWgcfjis +/pZQ3IgXk4wf+fix1GOomwmQ0o2xKaneJFIWvsAa2nosINh/JTfyG4vSG9jyaOlpaWiurp6bz69 o/WLRCBFIpZfSg6IApX6gXSVcWlcVEbcG9evQZENZiKRXsmyCSjAsq6+vr7RHo9nHJsahu6OaLUz XBTdhmJtmok4kJENWpbciETW1EsF9fKucaFQOJD2O4q03wlsahh6O6XdRsbg+0tJDja6R9K3lstJ 5VKMtJRE28VIBDpKjJnhzY1IJH+NlEUi7VKiIS8OGnn2SwTBZ9+YfFzaEEZ2QTKRyM62+bBl3b+g cdRJ/Ck9xJZ5gYzpJ5N/n8jjrTAg/cVI0l/cRsrwI6M8Wza+Dws+uQXCoX5Dh19vm/qyS1lEDb0j Ba/LQAs9mpMRRroMwJStrPanIBEzbeno6Lijqqoqy7WokC4U0SBBrkSWzJCNgRxhEIqujNAdFKSd IiHGjNYDvesgOJhdW4G2B8yWGOhkQyJz4gT8AB2onCRbI7qVDIhLwmGJLRcDLqsg53qcfL2STm8c cSSs//rZ2PXk5EC8nMw9iWSEWQQHUEYcTzZoY248aiE2eNpYRh6349x170uAe2yx80TOprex5FFZ WYlb7jL99kBfE/T3bU04x1RERfzWKHKANw7i0/AGZINRVIaRDkTUlpaLRHr88jXa+dYWcLvdApHc 27WKlKUnXg22uMOv/ZVoQxzZEMstEFPR37MvElktiWggdfiO0mfYeSBrv33dX0EoJKy0yhro/jJV bSkU/Q1UWhf9LXKI2zSQDp7ezi8RJcaGm0cz094rvfY9klORSP189Np3u0MaWr4ts+qxBvLsFzmd rAvi8Y02yJ0/GNkFiWqUkw1b1v0T/IGxUCHqcrvJ7/8gx+w9f/78y6ZPnz6Y2ztIIDYxcQmxqS4k fxqGNK9Y8k/4cvFj0TGLcerNhRhlETXMccDqMtDRPACQhIwQdRloosLjnwDe8gOEeyH1fHNVVVW+ onIULEARDRLkWmTJCJkM5DpkswZKJGzHBRnAxG0ts7RsQn696L9mSwysikSWy0Np37Wi1DwwMPAo MbavAOptKCsfAxVVE6CjbZWUHOB1GfilFKnslsETffQxrIgiuxzB62uEafv/UYvmkOBPxOj+u9l9 y5Z0dbQugkhiHQsTUaHPtMXlIwzIAZ1siFBGQPS47IlEOlw14HAzYu3aEd3d3e/mW1uA3JNQj90d X7DP1GZONiDyLRLp9zeSNjSEL/pgW1vb/2pr87MPvULhIWu/PTmcCGGvrf3XsL/UnQI6rax8Fxmp vI04QIvMSOUihYQZiTDL0PS+V/8tTvDGDzYiCoxFIvVzpSsSmSCNE7PPNruUaGjKRiUlwxdffLF8 2rRpuK1pfDB0uKrzuvOEGaR2A0U2JBJi38jX1ctu1pZQlFXsKpyOfC4k93tkMBg8zel0fpLLsnd2 dtYGAoFzq6urzyN/Vhvl6+9vg3kf3gJbN38Wd+rjNkvMFjDfFcI4okYkIxIEG3McJCMjqOtR3ysb T5bd0qampqa7hw4dmrW6VMgcimiQIB8iS+bX1/6b0kCOed3eGmKEiiJhPT09c8rLy/NWfoW8Qlzi k8VlEzJYWWJgRjbEUqC8Srr7gKWtzoiBuorkfZ98PZhObxxxFHS2fyUlB2jjIOHk0fdkfbeM+D1J yAb9GrxIpMvph70PnA1ujzSkD7exvEy20wYHwcFob1mYPKIiwhqgUnIAcisSKYtmIFhYIG0B8b1p jxJ0MrIh+kP8P/HftZwmZEM0p/67SMyxZEN0JogGT9JVy7e1/BRFUlOtAIWSRlHYKFGIbZbXlsqE VC5CSCIaIvE+OEEqJGZg2cgESEskUkoUcNoPdu4ayUQibQ5x6z/SzzTlYzkLzuyTa2Gj3YdO95Xt Ap0DH+b8+lYgswv0sVUWVRyJDMJXS66FcVNnQqBS2ub3cDgcH5Hz/TsYDN7ocrkWZKuss2fPtl9x xRUHkvOfEggEfgKSLStpbNn0ESz45Hbo7WmNp8l2hZA5/DqJpRNhsogaNjIhdZFIloxg7Q1f1cHg 9u0i3BOp12tkAtoKhYVGNLSsPG54yG43bZQ7E2rH/vtbNhvLweRCZMkMqQ7kmLdc0rFFIuE2n6f5 9OBAc45LrMAj3L98fvvW+1bm6vzltT8Z7qn88Xjuqjld4qMjsdRH+0saHk6LRMYRmyF2ODxQViHq Mwx2vfxVx7YHJwg/SFA98vZXHa4xDNEwZNgM+Hr5A9rez9HrmZMDMrJBLyi/pj4TkUi7wwHTD7gS AhWjhfuIRAYW9W676o9n/WLFuG1fHW94v2WVB1d4ay6cxhuBGNHACJFJIiriRAGAQA4I4bbabSZC eqPHpSYSGSc0KLLB5ReJpXCo5fOWtadaet7ZQkX9qWPd5d9lQisikSD0di1L3B0VUhB/lFq6pA0B MCKRMmLKjGxIlCF6rJlIZLVkh5JIpNcWGmyamV5tKGSCgfanXunu+Lgrn9esqD9ljLv8e+yMArbf zmX5LAY1BrD9qVacWLquLSUjGkKD6xe3rj8vr+9+NlA7+rFRNgc7cTM42MOQzAlSgZ6dpSLGbHKR SDt3XKoikcz14mxzRFhfH4l9d7iE6CgIB9f0bV9/YV6eS83oh5fZHVUs0RDYBTpbi4NoQMjsAplI ZDyiMdQLXy+5BkZNPB+q6g+RnpJ8TnI6nSeFw33zI6GWV4K98+Z0Nj+2JhIZTIl4C1QfXevyHT7d 5mo86KqrrjjCZnMkncrv72uFxfP/BhvWvhe/Pyx7vP2m4PDzETN0RA2/fEcWtRPf8lUiEkkvLYr+ Fi2T3eaF6sZfC/dFxvCV3VvOfLevt7nk+pQdGhF7JOpNO9yPOUCcxd8ZYXfWAU8y5FJkyQypDOQI 2WBus9lriDN2fd4KrRBH7/ZHwWFz5ez8ocFWIa2ve1VO1+nS4MkGDZLw8KizyYpEIsnAv2dkwIXu 5sfesFpnnZtmQdWo+8lJE8sQnK4KqB2yL2zb8oFlciBeTjB/5+LHSSI46FkPGdmw+97nQV3DdOEe wsFmch8z9wiH2r5Idt/hUBh4kqGvZyP09bVohg9tEGhEARVRwRAFlAGK5AAf7UCLRNI7UkSrLGFE x+4y4Umb6EBgsssnhJNCT/N9p5L7PtX0xrOM4MBm4Beu9HZ9SW6tP/H8MdFGPVP8myIboqDaUIxA 06tX1vYSdpxRGzImG/RrVEn0GWw23wGkjxcXqyrkFpE+6O9aeH0u+3gZggNbxPbbvYK8q/15LQeC 7y8lObRlYv5ycfaxu+m22aTuZue8kFlGsP9LcPkZ3xgG+juj3V+E0rNhSAVrIpEiUZBw+GREgR7S rsGiSCQtNGl3ikRDb/Mjt5DnckvuapC6VsujUFZ/PpPmL5dGvhUURnYBLRJJt/9weBDWfHkr1Hcu h2FjT5b4FPp5PdNszqHT3OXfvaKm7DBi023QbIIIagVFBijvP1YIYuvY7D6wO2rB4WqURqQYAcu0 esWzsHLZUxAc7JHek/5Jb1cIuUiknIwQI3iiZdTrlb12goyIQO3wn5B7F5cJdjfdPHGwr315vvtj hSSwQVAtneDg8omdXK5FlsxgZSDXLeOAPDxRoRCIDEKwb0VOL+GUtNV8hs8iaEfIyLGXkQ2y6JvB vtT2z46Ee2Gg5xNwlzFBDdAw/EhobvpAKFO0wHJyIF5OMH7nkkVwGJENE6f8CEaNO0ZyA73Q1XQj hEPWhDudXvF5t7csSkQqRE/KCJElDAIoqEikw9MgMWrD5B1ZbuneswmXV4ys0HVNZFEEDNkAkDeR SHoZBf4eKB8FbrfhcluFPAP7q0gk/zszuiT9QL4jLmkk2q18uWdZxRQpqRwa3JTXcmYLdoe4DHWg rwN0nRxmlyEubNyqSKRxuDkwRIF2GDdznIpIpNMtEg2h4NZsVpcpZP2/xz9OmzDItSZaqjC0xeND pNj+t216CTrbF8OoieeAPzDR/Pz2ADg9k0kFZLfcGK23Yc2b8NXyp6CnuynaTkEelaGXW7YrBO/w 0yKR/Laq2RSJpL97/GOhsv67wj0O9n5OPguzW3EKWYMiGjjIjPlciutZQbKBHNPdniHaR6E4gLMe uF4vl5AZnLnWZzCClSUG0SErOpgFJPoMwd7Ul3wMdL4rEA3V9fuQd6ESBvpp4eHk5EC8nBFr75wV HYjhow6BXfeSTdiHoavpzxAaWG/5Xp2SiIC27Qshog/0cVuBJgfoiAMomEik0yOWPdS/SiOL8g2n T1S/1xy1WLvlowgSCYUViaysVURyMSHYm/8oR4SsHyi0jYIwIm9la9UH+wpTd9kAOoQ8BgY6SV8G nFMFieiyAolE2iXX0KPWHHaf5F6CGgmUL4SD2yE8uAHsLnolkA38FXtBx/b38lYOqzCyC4zIBkRf 9xpYseASqG08ChpH/QRc7vyI9gYHu2Dj2jdgzarnobdnKzWREhvxJVEZ9ERJYgLDKPqAiqjhtlWV RdQYkxEJ+0UmEqnrlUTsDmgYfS4IEimRAejd/lAuq1IhQyiigYMsoqEYBnGE0UCO3w2EZxQKhHSc 5lTgcI8Em4MVFYyQDrevK/8zxDqsLDGIaKG0Him7H0zD+Az2fUEMo+2kLhKDt83mgCHDDoeNa57X /k6VHGACIAyMB+Y4SQQHDpbVtZNgnwMu5S+moWf7gykx8HZHBThco4T0tu2LokZCmLcaWCOUjjjQ DVBewJEhG2LGAS8SmdCBiBkdtoRIpLhkI3ENWb862JcflXwaTvdoYlyzO1xEwgNa6Ll227GHyC/1 iT7fhIGmkw2xzCC0ITAnG6I59d9FYo4lG6IzQTJ9BoXCIViA9utwjzJsv8UAG/cuIMoqs0MqFwvs TtFR7O1tTXS7zDIFvU5oh9+6SKRdclyEyxvtW+QikYJzGDsO+2aHq0G4Dy1snw7XzwNwHPS4WMmR 8uoDipJo0CGzC/SxVW5PRKB58+vQ0vQ2VA85AuqHHQu+sjFZLxdGWG3fOg+aNs6BLRvnQig0wNky 8TuAZFEZOtkAkN6uEELUjhkZIdnyNT6BEbte7YiTtIgGHr1tT0NoMH9ROAqpQxENFByuoeKapwKI LJlBNpBHEYTWrW/G/6LHCn7giA+I/Fki7Hf+Csx5IuxvQv5IhDtWfj15GSQXR9hscUOdIpa173Qn ajPJG/spMZtoAzYfnR8S9U0PJux57FBRJ+wwmfMZG5nj1tu1XFuHV0gkwgu1v6RRBNrWTzZ2u1U0 cEKDqe+qhefv73oPvJUnMOm4fAKJhlTJATOyIZaTiXgwiuDwlzXA/jOuBbtD3Mayv/0/0N/xppBu BqdXMovZtRb6+9uj17TFCsPsw56IRIiSA7RBwBEFkDBAAdhoB1okktWBYLUfGKM6vmQjqgMhE4Is xIywbLlRb9dSrZ9nlz+IuiI02QD6fyPAtW+qDQFkVSSyr3czbNnwOvUD8w93EJ0egYg0E31+6lyS vHQ63ccbwcZ0mLI+1ei7jeljma82Or+NTTf4rv/DptnY6/LljH+PfnF56sFXzpI8kXAXhAbWQL4h 7/eXkfIUtt+nQYeYOxw+4lCJ2myFIGmyASR8weZl0kKhPvJutkXtARtN6NKEAoImFayJRIpEgSgS adcJ3RRFIp3uYcL9hQvgsA32fAaeimOZtLLK6aSuvRAmdVuskNkFZiKRUXsoCNu3vK6RDr6y0VBZ ux+UV+5ObKJJ5H5T1+PH83V3roWO1uXQ0rwAWrYtgMGB7thvEaa/pMspnUChyAY6b7ybt4FJ9EFi FwrZtqpWRSLlugw4kToZ6ob9ULj/0OA6Yk+9lHK9KeQXimigIDVCCySyZAZ6INc7g/bmd6Ft27vx TiESM1rpjkJLi383TufTwinkNTtvOEIZ6EnLFmGuQUN3nHSCAR0Z/bud+o5f0JGKGwC2WJ3F/078 ZmO+W8/rKxsnEg2RPi0sPJdwytaZF2jZBA8zsgERkM1wZWB44vIJnmjwB8ZCoGI8GYS/BqvkAP1O 6aDJBhkZwZ8P4XKXwX6HXgseyTaWgz2fQG/rP1K+R1m4dGvzQmb7qSg5wIXYCuRA/kUina7hxIji 6gI1TPq/TLkeMkWypXEysiGOSCKTkUik0Ibi50pUU7oikau/fBho0oDpL/UiUn8I6foxFGEg7X+p e+XHk/h5qT/odLoetS7Ynmgn8T5V/1136GOksM0OVF6K3LVReWzRfPpxifNS56L6cfp6dup82nF2 8RpiXhvUDvuRQDQENX0GE/YmR5C33+Lo92no3aEfSWUu1Dkc3EochG2FKViGkIkndndt0f5lZn9B NsOr5eJIhcxFIpndK6jjGJFIyfVc3tHCvaAYYb4R7EOirJ2815XxNJvNDeXVBxK79u28lycVGNkF iUl60Z7Q03q712qfzZF/ab+5vQ3k00jshxqNZMHIT91+0g/GCIVQsBcGBtqgr2cb9HRv1iaX6P6b IRd0xhvk5eTJBt0E4PPqH/PoAzaaEXjyC/RoSmMygrVfogSbwxmAERMuBmHJBISgZ9tfNbJFobih iAYKxSayZAYzxyeWw0InQ+U16AyNWFqjvGZOmx72Z+bg0R1g7FeBbLC0/ouaVRBmcSGxnZR0VsEg r50rE+b1V8ic5uWQS5EwXBogX2dePAan2L4g/tzlREP6s9uhwc0Q6l8BDs8kJh2jGr5e/ndL5ABw 5U1FJJI+zka8oH0OvBLKJdtYhga+gu5td6XloMj6ptbm6PNmjNUI3271WyucSKRbQuAG+1dqId/5 BD4bp2+KkM738QxPEHvoTLuJZZKJRNJT50YikbK2l6j+1EUi6WvgeSOxP5hmmio5QhmeZsScRsbw 9wGJ+9GNUhvdNm02rk+n2qMuoheht1qN5tGaIFDtFrjlPzadULGx544VLkz9YuOcLv0aNhsV4RM7 3l8uLksM9ubfLtDar1fS7+dhO+N0gHVcViGpuxKNZkDYJdtB9nZviX9PtGujbQDFtqc7a6KeQwzZ EImUOIcu7xjhXgoRpROJhGGg+yPwlH+LSa+qP6boiQaEkV0g0z5AyOxd/Hegrwn6erdwE276d24i LpyYSEw8c8m4YOIHUHegH2Vo78dJNAu7Qmg2tGRb1SgZIdoTRhE8ut09YsK5WlQZj762Z4gdsdr6 g1IoGBTRQKFYRZaMwDCXaXYyRsxmph0nVUomb2Iaz9qWg3xHl/gtyfovapDV2VN94BbDDw1mFbi8 NDGhGwsyI3Qwx0aowzOOXN/PpIVD3dDX81VOr5sO+DaCobTesnFCvsEM1+z2d70Lfo5oqB96GKxZ 8SB5TiFTciCbIpG7TT/XcBvLri03EwMh9egou7OaGLh8mGsEWrd/QRkqtLEqtnGRHKBIg/g0Q4wo gMSyiWQikbRTFz0uEcarG9XuMgnR0Jf/ftXhlr03PdL3Jm48gkg2aGA6r9REIhOnMRaJlGmJJJ51 9IR822NIhXhPbUKOUGQDUx6L5EiiKmL1Q98HUGRDzCHSj6GjaBKnpMgGzEpH31DPBAmIxO4msatL yAGgCC/9/UjcDP2MuegcipjA/9ttLvAGxK0ZCyFm6HCPJfUiab/dxdfv6/BXSLRZSlifweEcKqT1 dG2Jd4ns7C/dpqP9pplIJEMEAxtuDjHHTphFhtREImnn0O0bI9xLaGBtVuvLKgY63xGIBm/ZRPKZ oG3ZXewwsgsSj0Km8yTau/ZY363zQnq6YL/Yo880DMbRCXR6dPhmyYVkNrxs6069bRtFHyAsi0Sa khFR+2Xo2J9BZe3+Qn3jxFJf23Omz0SheKCIhhiKXWTJDNnpZMR0Wd5UO07peSmyQT/MKuFBEw66 8Wi6/stgVoGebQOzWQVJXr2zdDgcxJASZ5hyPWMjjbzpXKLNDBQj6DZSphmefCjtFk19OhMMdH0A /prfAO4zrQO3yKqu/wa0NH0UL0gmO0gwTVbSVsftgttYflssnLaN5U2Wt7HkIdNn6Gz/WlM6Z4oL kiUNFkUi6R0pUhGJjM+CSEQio2SDDdz+4nA2ZERyb5fxeyOQDRC9N9qxj3ZliXrQyYZYZhDaEIAl kUh6Rwqa0zAiG3TwpAJDFAB1ojgVYU6O0GSDflMyYo4nG/SyRCIUAQXUQhS9UBzZQLdH0J2uODOS IBsSJDLE/8sSCfS69YRjB5Ag0qhaA+YObYm83gBuzcjuyx4h73FoIP8h5kb6IoXYYtMKHM5y8Eic 2VIWgnS4RwtpXZ3rEyQcNUaYbwOov2+0DZNcJFKYRaaOi0CCM2bJtug7RJfH5iwj42MddyfhgrRr RLD/a3LtrzUymEbdsJNgw8obClKmdGBs7wIA9WyT2bt2jmyInZ3NC3qUMJ1XLlytkxhmxIR+DYbQ kNj7NNlgHCGciALW/Q9el4GOSObJCDxH9ZCDYOjonwp1jPo4XVvvKNp+T0GEIhpiKAWRJTPYuI6M hpwpTaKkb9YhpdxximWLdj7WZ5P5ji5xb+KAzJIKsZMazCros238dlJxA8AkLzLudjsr4JMPkTCn T6LPUITrdGnoz61MttQkC6KAkXAPDPZ8Cq6yg5j0hmFHQsvWjyAxe5ukfUodu4QjKSMbEI3DD4Jd djtFUrIwGRRvJ21iXdr3JuubUJ8hwu0KEZ8ZpukH3aErkEik0zMW7A5uC7U8aJjI4JLqmphHVtB9 XiSWUDwikbGjbZJlQbGy0mQDfR8ycoQmG9ibNidHGLIBk+j70J2uCGuUxm+b6r/1+pYSCRTZoJeN 1hqhyQGebIhwjp1OpNmZMnLvTewasqVxhdgtBVFKSzsR/nKsO7ZOcSvDdAnXYoDDIxINHW2rE+8N RzZE257xDG8sFyRsGPkSTe1QiyKRzO4VHMEAsfL4JcsmwoObINdbcpuhv+M18NedxaSVVX6D2Fnj izpqh4exvSu3J4zsXTtFBhva11oKm1dulxv7AWLe5JOLOtkAkCRCGOi+nLXL6YhknowIVO4K46Zc JK3fnuZ7tAhRhdKBIhpiKBWRJTPESXWhI2OZUisdkplmgv6XWcdJ59XB57XHjNOwxdlkM7KBHpCj tH70INmsAr/1lFEIGGMASPJKneYci4T8ru0xAAAgAElEQVTh7JrTI4byFpM+gxGw/vzludvmEJdP 8ERDVd0+4PZUwkB/O0M2RGHQPk3IBjqvfqqKql1gj30uAdFRiW1j2bMgo/uSRTQ0b10Yd5Zohz8+ M6y/D6DPfHAhtgI5kBuRSI902URuNUxksNmcpB4nC+ndFpfGsTP8xSUSqeXgyIZ4uWz6k4kkiAIT soG9BtWvg0g2xAtAXTMSu6aMbIgTULpRClTbtNmYd0pvjzTZEM2bfLkFUIQYXYt0xYjaDhC/V52A yyUxmiqM2m8x2yjSZRMFWHKSLdjsHrA7G4X0zo7V0d9j74XuNNHtHoDXi6JneLVc8bYnW6LJi0Rq wo8ATN7ohSO6oWIqEun2jRXuIxMyPBsY6PofeKt+ROqYXY/fMOo0WLvssgKVKj3IbHEzrTMje5fu Xw3ta+25y/KKfoB+gEhimJMfugnAl1P/ZCISyUhFkf/5ysfBpD2uJu8bG0mG6Gv7Nwx0f2rtISgU DRTRANjgS0tkyQxmZEMsR0odEu9clYxIpNH6L8oQYPaWhtRFIgOVMqGr3BpSmrHJhfKGBluhv3d9 Tq+bDaB6sMc/RkhHciYbQIG2SKiF2aIWDfT6xhmwad2LCZdD4mgJbY5y7BIQoyF8/iEw/YBZYHd4 hPL0d7yU8jaWPOzOOvJh9zvHUP/W7Ys5Z0yynj1mkEZnifk2DnHxPKlIZFykQfdCIf6y2+ySaAfa u6YqzRsojhlhp2ci0MtqEKFgB/T3rLF8DoYniLURoygChihgqqT4RCITrjwYkiMM2QDG5Ih+bZ1s YO4DEvdjVSSSj1qQiUTGKzvLIpEuF27NOBF4FELM0OGZQArH9jGhYCfp99fmvSxWIRfRLD2bSgcu r+UGBOjp3qLtAsC+i+zMsZ4W+2ZZJFIggqkZYHpHChDIiAgkE4n0yLYcHVidxdpKHUg+97U9C/66 05l0b9kuUFn3TWhvfqtAJUsPRrZ4alpnrL2uQ8irnTQ+0At52OPE88ry8rZ2MpFIWdQvgL6EkrIt OLuctq0DgbEwdfp1xFZktWgQgz0fQ2/rv1N4AgrFAkU0QGmKLJkhMeil38kYMZtyoiCVjjNRtkKL RPKzCrIQMOmsgnbTTiirEGeYcr32XL5sonjDZ2lEoxnYETM8uBHCwdasnB8d8P6u98BbeTyTXj/s SNi8/j8Qby82kWwQkXxZj9NVBtMPuBbcnmrhaG0by5bHM74nl0RXoKNtJQz0d8fJAX62ID7RYeON VUmILQCw5ABtEEB8dgLoWWJqR4r4VIdEJBJ3R/GWSTRMCjAjLFvfng6RHDcewZxsiKVI2puWgSEb tJw2+s0oPpHIREGNyRG+386XSCQAFe0QLykrEkmTDfoMnI0mIKhb1NN9AdJ2SRumEQ5ug9BgE+Qb 0qWdnYuhEFtsWoHTXQNu73AuNZJzIj6XQDuRR2f7avGdhsR7oc8cs7O/VJtmZnhBQiokEYk0mkWG RAQbHTWhv2y+MlY4GVGI5Ww8Brpwq+rvgN01kkkfMvIULXpnsL+0tkU1ssUTjyK5fQ3ARsmY2teU SCR9vOFyUYHEsCYSyU8uav2sSYSweWRx9HqV1RNh929cR+yqcqEesW12b7vbYq0rFBsU0QBGIktL oNTFRowHwGi63nlRRxjm3VlFIo1mFcqrJhOjl50hxb2gQwO5jSyQrdPtLoFlE4joml0W2Q6lHeia IxAN/sA48hkDPV1rgHf+NNiStPvoV/bdIQ7Int+YCWXlo4QyoKhVuttY8pAt6cJlE/zMr2y2gP69 ECKRLu848o7wGibdpH5WZ1Qn6SCbS+MEsgF0GiYGjsQyIhv0zEy0gEHbi5024V5LoghkZEO8SByp wBAFQJ0oTkWYkyM02RDLLe23i0UkkibVjEQieV+gLMvb8GYCWfvtLuZlE5K+Hnc0CIe6ClCa7ECL iuKApC/CzE7SXzJ69td4G0D9XAkbRp8ZjiLx3apIJL8jBYp0ur387hkRTZCx0ECbu2f7QxBonMWk 2x1+GDr2fFj/5ayStMuN7V0A9tnGjxBsEtmOFHpexr4G6yKRchIjvclFvV83ixA22n6+fsjesOve M7VdyXjgZFRX041p7dilUBxQRAMYiSyVbogfDbNORt557ZgikTIxGt45S0UksrxKFhaaWyPUbi/T trbkUczrdGnIhNWyHUobGtgIof6VpJ5Yo3DIsG/C2pUPAj0o6/417YAZtk+O+Z+8x1lQUy/ZxjKE 21jelLVBUbZTQvPWBUz7jhWQcsaKQyRS5mxENUzyuzsKrq12ekUnIZM+nu7zIrEEKyKR6eog6A5/ vM0aRBFEs8fIjx1QJJKPWqDJBr1s6YpEMu3YBvKlcTneulgGJLSdXnEGuviFIFkUYslJNiEjGtpb lkucPoQ8/J2O6rEqEinTjtL7ae3QWGi6dKtBEEUifQFx2QQ6c5Fwb9p1k00MEjsKJwzcgRlMui+w KwwZeTI0rXugQCXLDDIbNjpeSsYCE4c/VZFIc+FHYz8gcab4HSSdXNTJBgDjCOH4bzHbYviYY2CX 3c8Bm43dC0jLF9wKnVuuI3ZVZypVrVBk2OmJhlIUWUoVyToZcTsd87zCIBrLq/+VmrqumDcXIpH8 enIrW0+ZiURWVO8p1PNgjo1Qpw/D0NnOeLB/S0mEEzpdleD2jhTSs6XPQANFIf2cUVjXeBis++oR ZAKAaS/4I+WARcF4Lon2GXOURk/4IQwbZbCN5Zb0t7Hk4XA1gN3BbkGGszktW5fEyh1zjiLUGl/K GZOJRNIvU9SpYkNsbTa5SGR8J6qE25h42XV181g96qSeV7ZGuyD6DCieyg51wcEWGOjbmPG52Rn+ LIlEUkYo3/ZkZAMw54qdJloggWyIlyuWUGoikbKohWje7IpEulwB4tiIpG4hxAxl7Rd1ebLRfnMF 6W4dJazPgCS/3TWMS41AR9uKeLtLZifpfTLd7gGyIxLJCD8CgFQkMvZdqjvSX1zLhHu2P6yJIKNG EY2qIceSdr8JWre+UqCSZQaZfW2kfWDm8NP9q6F9rT13K8KPZiRGEhueIhvoe4rQ3atBhLDd7oTJ e54JI8Z8R1pXuO155+bZGW99rlB47PREQymKLKWDxGAodjKxHCl1SHTHJycK5CKRqZAY+RaJFPUc EgSDPnjjd4fDC2UV4gxT7oUgZdvzlQYhJg2lHVxHnPKOrF9rsPsDgJrfAC2a6XRVQXXt3tCy7ROx vcS+WRGJrG84AMZPPlly1cy3seQhC5du3b4cBgf7ou+zLeGM0dE4rDMmWc9OG6uRRBund6TgRSLp WWJmxlknG2ysSKSd1L0vkH8NExmk+gxZfG8YniDW0RpFEdAT8BmJRMaPMhaJpMkGHbKIi51RJDKx tSXzEOL3HKiQbc24iRi9LZBvyNpvMS+bcHkawOUewqWGyfi4rCDlyQY0O5FDd9cG0hd3p2QnYVuW kQ16mxYjL0FCKqQpEhl7t3zlxanPQAO3q+7ZdhcEhl5N/mJ1UoaM+i2EQt3QsX1OYQqXIYxscXo5 gpl9bWM6YuHs+lHRny2KRDLHCySGOfmhmwB8Xv0j3RreNxSm7X85VFaLO6ghcBvczi3XZk2/S6Gw 2OmJhlITWcoECWJB1pHF0g06GcnZQBbWZdRxpiISyVxPt1RNyAb2PhLnpZEtkUj8HqicCjZeJCzU TBznLZJ6yh5kbbVUIm+kobQ5cjrDxAgZ7PkUXGUHMul1jd+E1uZP4n8L7cVmTjaUV02CKdOMtrF8 KONtLHnIlk1sa1povqSBCgUvpEikLzCJZOc1TDpyrmEig3RpXJZ3FLJRXWexiETqMBOJZMgGoIiC WHkLKRJpo9tm7HrJohasikTKdqTQjWI8baCqOHZLQciXdhbvsgnZlqDoyBZLaH46kC29am9dLjiN IszX2utp0bZntA0gKxKpO27pikSWSYiGYJERDYjBvmXQ2/IY+GpO5n6xwdCx52lvdfv2dwtRtIxh 2G7iQ661HSmiTn5+RCLNbG2jyUXaJtGjJ0eM/RbsNu1McDhFPQYERj12N91GjutOrVIVihY7PdFQ aiJL2YBg1AJIOy/qCMO8yYQfjTpOWV7D81JkQ/ww07KxHV3i/IkBmV9PnopIZGWtuGwi19t22Z3V YHeN4FIj0F3EBicN2Z7quYwA6e+aIxANVXX7gstVDoODnYaDsu78aaDakdc3BHbb+2rSFoy2sXwj 6/fg8sqIhgWxcrOzusyShjhoZ4yyBqjfcyUSWSxb2+FuQvnSNRHIBtBpmBgkJJaMbNAzM9ECfN9I ZY2eJtGgRUJWJBvoMumFNxKJlEViGJEjNNkQy8302/HymJAN0TYWJRviJ9ILJSMbNAtXrw8JqUYR czrZoJ/USCSyojr/GjwyoJiqwzNeSC/mnYbyIfqbb0SXr7DokOgzpGIn0TtSIKyKRNKkAd1f6N8T O01EBJFIl69Bi+5jEBnUhDqLEX3tr4LDNQrc5d/kfrFD49jziF1UBq1NLxekbJmCnvjLRFhdJhIp nYiD2C4PHFmRzA8wz8sSGmYikR5/Hey5z7nQOPwAwzrBXUd6mv9O8getV6RC0WOnJhpKUWQpWzAe ABOdl1knQ51JPyoJUWAtL8Oqxg/WSYHsiUQyE7NgIBIpmVXAk1XWyNae59aQks1q9feugVAw+0sP sg3c6szl4de3hnOiz6Aj2LsQIqFWsDkSW0+iHkttwwxo2vCSMMtKD+BxHyZ6kKaEvOvefwSXW7aN 5adZ2caSh8M9nCk7IhwehJZtS6n2TLdV/RZo45PKE5tuSEUkkiYbojNuCZHIhA5E1JmmRSLxMH+F +I4UYkbY5Z0C+dQ1ofu8SCyh1EUi043EMCJHGLJBu/cIfUsarIpE0uQXU6Mc2cATc3paglmJHof1 h46Y1y/uJlOIHSecsvY7sJW03615L4tV5DN6LR9AkTqHNKJhWVI7SWbPyGaOaaItLprH9dkJ0DaM XCSS3pGC1pkqKxcJE9wFqJgdu57t95OxMAAu/37cLzYYMvK32jaqW9c9CKW4GwVC1m70sdW6zcwu fabOzuYF+Y4UiV8TkJMYqU8u2onhPHbicTB1z5PBaRDFQHoITZejv+NN44pSKFloREN4IHKmzR2q KHRh8o2y+rP3JVXwVzqt2EWWsgnjAdC4kzHKu0OKREpmFVzuMghUiDNM5JhjIxDMmfXnq/npVeSf 4+i0UiHEZIZnJDywPBRq/2Wurqmx6OG+c20O+BWdXjf0SNi68WXpLCvTXrST4KN3wOS9ZoI/MFpy D33LBjqe/F04MtiX7fL760//IfnnUjqtpXkZaYMDiesnvEv5koZIjBzjnDGrIpH0jhTaJeh1wtws MRNR4fCALyAa5na7+0TyjuR17YSv5lcXkH9+Rqdle9mEDOwMv0g26Jl2FJFIof8FY3KE7rcjsWvm UiSSuUHqXaFFImmyoaJa0l9F+laFQi0/FX7IMfw1v/49+efndFox6/J4fCPA4WIJ0gjp7G3QfARu oFigYmUEf9UvJ9ps/ifotGCwG3q61mrfrSn2m9hJBmSDzSbpsxNni18nFZHIsgqRaLDZy/9Jns0d mdZTroD10d/+oMvpnXorKeuB/O9V9d8m7W40bP76dhgcaC5EETOGzL7WTVDrNrON6V8N82oNKn2R SCvkh94864bsCbtNPwMqq0SbWUckMrhxoPu1mX0dr+Zu5kmhgLBFNKKhbvIzKwpdlEKAvBgn8mk7 +rIJHrphp0QigSMV5CKRlTVohArb8Kzw1537CvlYqPH0QNqqsF6jmA1OGjKiwWb3vlQ77rnPcnnd gYGBm8mTYogGf2C8RhqgkZgsOgaby7ipZ0JV7TTZ6df39Ue+GRh6++ZADspOyvAHPq1560LtX94Z Y5wqfklDAUQi/eVTtegRDut9NSc/J663zS1IeYX1J/nSNWFn+NkdKfgoAhnZEDsLEy0Q4wkEsiGW NcFhGEQR6NfWyQamPBypUHQikXzbpMiGWO60RSIBElojsh2FbLbc91cyyNtv8RLM0r7eZv8gMPTO 93PRT+YD4XD4G3xaRysKW9KOXvp2EgAbpq7nA2AJBl4kku6zgSMYjEQiA5WiQK/N2fhiIdp2qli6 dOnhU6ZM+Qf5+iP+N19gKozZ9Q5oWnsvdLTMLUDpMofMFk/dZjYmG5i8WqOQ5TX2A5LnTYxVgfIR MHmPU6FxuMAL8XiotbXz97W1x3V6y49LllehRLFTL50gOJxPKJVZ4myC7+B0mHdefKcXPxvIwrpY okA/snhEIu3xqVlzkciq2r1kVfiOLDFb6O/vn+B2u0ezBQ8RZ7k01r3Ktjojxts7DodDkjt7IHW2 lDzfT8lXxlCsbTwCer96GOLtD4By7BJ/DBt9AjQMP0Z26o5gMHis3+/fnIty24nlGAqFDuPTt29d EGvHCNYo5Wd1CykSGagUl00QvJ15zaSGrq6uurKyMqHx5bOPt1FdpyWRSP24CFD9WnIdhJ1CJJLa kSLeNmPXS/AtbHtMRySyQrI0jvRXb+e6v+LR2dlZGwgEhMIUs40i6+tJ/b9ts0kaYImAlP0gPq29 dan43mRoJ6UrEslMmETkIpH4k93ugrJyUa9mYGDgI6/Xm34F5QlTp04dePrpp3/6gx/8ANe9ncX/ bneUwdBxF0Fl3ZGwdf0D0N+7oQClzAxGtnhqNrNMZ02SV7IjRawUzLVTad+B8pEwYcrPYNjIw2IX MMQm0qeeTfrU52tra61VjkLJYqclGlpaWiqqq6v34dOLebYgl6CZ+VSUaLMtEpmM8MiGSKQR2aCT IHonzYtE4veaOnG2K9eGlMvlOoJP6+1eCeFQ1iP2sw6XZ4hkqzMItrW1/S8fAwx5No+QZ8MSDQ2H w6bVj5Fnjms6Ew2Ednyq6w+A0RNPlp0ySAbIH5NnkrOOor+/HwU56um0UKgf2lpElXOebNCdKumS hjhoZ4yaNgHqHDKRSH1Pdt2h48mG6AWhrFLqbLyTb2fD5/MdBlz40UDfBggOtuW1HALZAMBEN9CO ffyZ2kSygckMkFQHQScbopmVSKRAqlHEnE42eHz12tZrHELE6X+vqqqKT88p/H7/YSBtv8W55Ru2 X3+5qCWEJI3dbup0FDsO5RM6WqNR3rmwk2QikYx2VBoikXhYefl4kESabfZ6vdnbkznH+OEPf4iD 9tmkTS0i7e0u8t3F5/FX7Aljpt4Bbc1vwPbNT0NwIP9b0mYCI1s8VZvZqkgkvSOFUds0JzFsUFE1 EcZO+iE0Dj8YJBG/NLAp3tve3j6T9KftKVWMQslipyUaKisrDwHu/gcHmopaZCkfMB4Ao+l6J2Ol Q4qlJCEK2Lz0tawMztHypCYSGTcraVs/khiQMYdMJNLpqYay8tF8pUR6e3vfLSsrk9ZnNkAGBl5y uaS3tST4rLa2tjMf1+/q6nqqvLz8z+RrfLsIFHurqJkG7duj0aL8LGugcgJM2PUi4KzFWN7I+Q6H 47Vclpmc/3A+rbV5CTEkg6bEWaI9y5c0SMkGzRkzFhyLQycbdDYu5tBFZ9xi5SD/dTkD2vIUHgMD A2/ne9aMODcCQVeo5UZ0nxeJJeRSJDL+FfTfE+1bTjbgdyUSWVUjEskE8wphFEvbbxFPhHh8Y8Du KOeTuxYtWvTJ9OnTC1GkjNHf3z/W7XaPpNNQOLGz/ctoxE+O7CT95aPJhrh2VJI+20gksrxqquwW P0ijWgoO8m7cFwwGF5Ox8p/kT8EoA5tD026orP0mtG17BVq2vJB3gjlTZMdmjhJXNNkgzQtykUgz sfiIzQ71jfvDqPHfh+paqZ3H4+NQKHS+0+n8ON+krUJhsdMSDXIjtHgH8XzCeAA0YkplnZ7EMJbk jQ7Ixnmt7HQhE4m0SnjwZIPuOMlEIqtrpSHhi8vKynLGTs2ePdt+9dVXC45n6egziDNckOOlJjQq KipayHN9Ebh1nbUN39SIBn5Q9njqYdLus6TbWBLcTvqNv+W6zKQcwvPevm1h3GFKRpwxs7p5Foks q9wVJDMaK71eb15FIGMQ35sCO2rsDH9hRSJpRJNFkUiabIieJpIgCjhyhCYbEtfg+l8wJxuY8tjM RSJpskFvm5mKRFZK9Bkgj/0VB0m/X7w2imzZBMHc6dOnD+a7LNmCy+USohk621dAODSQezuJIxu0 dp+BSGRF1RTh/si792GpLmshDuv77e3te5Ex/j7y50myPLizXHXD8VA15DvQvu1NaGl6saQmE7Nj M8v0Q8S80ZaTXPjR66uHoSOPhmGjjwGP11JU6kZynZnkeT0eDocjybMr7GjYaYkGgpKaLcg3dMOu VEUieaM1VZFIXWCJDlWsqZcaoTldez5z5kxkN5gw+ki4H3q7v8zlZbOGQukzcNd71G63M0RDZe1+ 4HIHIDjYFU9zOP0wcY+rSbqUbX/xmWeeueSHP/xhTssaI5YE47YFiQbOUTQjznSiIO5U5UkksrxK Ssbl3VHr7e0d5vV6OeWzSF52nEgGdoa/uEUiEwVLkApmZAOAWF7DSIz47SQKQBNpVsgGXT+EaZsc 2SDb2tJIJLKqVuzjC6HP0NPTM9Tn8xVl+zWCdHehAiyZyiZI2WfwaR2tSxhbKJntUywikRXVItFA 2vYHpbyspbKyEsMUfhwKhf5J7uM28n2CLJ/N5oaqIceSz7ehu30etDa9DN0dC/Nb2DQhs8VzIRIZ P1QiEul0+aB2yAHQOOJIqNaWD1t6p5vI+3/Lpk2b7hkxYkRvOBxOtwoUShw7JdFQiiJLhQDfwekw 77z4Ti9+NmlYF0sUJDjbQotEsgJLoPXotfWiEGSunWZyblGfoWsZRMLFu++1Drd3KBmgBMZ7YOvW re8PHSqsg84Z5s6d+/qhhx66hXxt1NNwrWp1/QzYtullrY3YbA4YN/UP4CsbLTvFPFLmn8XWh+YU M2fOxEZWQ6eFgr3Q1rJSOgNsRpzpv6FTlZgBY52x6Ppf3hmLHUg5azKRSJ3Yo0UiZYr9hRCD83g8 wnvT37Oa1GWXLHveYaO6zlIXibQSiQHx3HrjNCZH6H47mtXCjhQ2uUgkfRY6wocWidTJBn/ZMNJn SfurufnsrxBer/dw4J5Of88a0n7zsuIsZWD/6SsXNsjYQfUZFgO/bCKZ7WNkJ8nsGSsikbFvlkUi fb4GcHvYbUcJ+tasWfP5hAlS37ykQOykF1etWvX6uHHjLiT3jNtCV8pz2qGs8hvaB5dKdzS/A+3N bxX9tphGE3+pikTyk3DSvDGRSIfdCzVD9oPahoOgpn4f3J7aanExguH2pqame0i/2TNixIjMK0Ch pLFTEg2lJrJUSNgoI3FnFoks89eDPzCMr55QV1fXnMpKgzEtC5DpM5QKE2+gz/AxDj75LMeMGTOC 5FnitlgX0+m1DUdA8+ZXtOc8auLpxEmWriNe39fXd1xDQ0N3Psoq1WfYjrOYUY5DRjbokLVlmmyg Q8hpZ4wWFEs4Y9S0CeivEysSSc8o48lcrkoZUZNzDRMZZMtPii1izYxs0EA59vFnahPJBiazdi6I P0ozsiGaWYlE6hE8smgGKEB/hSDPvKQiLr1l44kj4uOT255//vn5uY4CyxVIvzXC6/VygjNh6Gxb ZmrPpGInWbFn+MgIrc3HPmYikfQ2l7JoBoJ5EyZM6E+3fooNsXu5saOj497y8nLcHvo88vEb5Xe5 G6B22E+0T1/3l9DZ+gH5fAiD/dvyVuZUQNvi6drMes/P6ock8vr8w6Cqbh+ort0HKmp2B4l4qBkW kevftnz58qdwh5B8k7MKxYudkmgoNZGlYoDxwBpNFzuvHUsk0mDZxPxY6F5O8Pnnn7umTZsmzKiU uBDkO/kuByIYDD7qdDoZosEXmEgG1pFQXr031DZKt7HsJMd9z+fzbcpPKeUOsqbPIHnnNJhE7jAz v9FvORWJrKiWLptYUlZW1pTktnOBktDgofs8ekcKWRQBTzbEMoszUiCSDdFrULOqoP9uS0I24PfS EIm0x8LJ483doH1Hm78oEmlANOR9W9YYJDZK8fb7Bn39nHxEgeUKHo9H6Iu7O7+GUKiHc/oQqSn2 p2InJZAgK+Lt3kQkkiaQq2rEaBMoUSHIZKioqMAZw8u7u7vv8Pv9F5LvZ5KPoFJKw1u2i/apH3Ey DPSug672edDdMR/6upaTeiwuiZFs2Mx6lAxGnQaqpkJF1e7kswf5m1mlawVYOS+Ew+F7XC7XO6jB MHWqVHRUYSfGTkk0QImJLBULjIkCtvNKV/xIJAqs5aVKyJQtmyKRdQ3isgnIsRG6xx577Ev+CdBp 4VCnFgJeCvBXSLc6y6s+gw4yCC4mz3Ee+bo3nT5y4tnESJ4sO0TfxjJv4SNz5sxxHnrooYfw6S3b FklDbePvBucoRiESZ8ysbhZFInWHTrZsAgrgqMWU4scwiZEQ9HQtzXdRLIOd4TcWiaRcY6CXJhiS DZDwt3d0kUjZjhTRdmxNJLK6TiTKQqHQO05nfs2kWPsdy6aGoaezeNuvv0Ksu0IsmcomZKRvR+ui RCSSAbmbzPaR2UlG6v7ZEomsqpUua3m/EGNxvhAjuC/t6Oi4KRAInEHq8gzy96hkx7l9o6AGP40n kLodhL6uL8m7twT6uldCX89KCA525L7wSZCOzezEiMPAOPCVjSc2z0QIVEzWduBKEyvItR8jfdUj Pp9vI7YjpcGgYISdjmiIiSxxcWTFLbJUTEgMssaOTybiR7FfKaKAFbwxJwrk10tVJFJGNtQNkeoz 5FQkzG63S7a1XByLsihueHwjweEUBrHeDRs2fDR69OhCFAnr7RHyvBmiwV8uDSmF2DaWr+alYDEc dNBBWLYKOg3FKrs6vtK+m+qUUI6iWVtmyAbt5QJBJNLOC+ZFr8qsZ4+/o3bd0QSorCm88CfC5XIJ s8F9PasgHOrNazlSBTvDn75IZJsaTZ0AACAASURBVOIkOnGRhGyA6FzrziwSGagaAy63sASuZ82a NR/lew07ab+Cg9vXXbzt12Z3EQdGJGtDoVCp6zMI/UhHyyIJUaCDtWdSsZNSsWeAi4zQ8wHIRSLd rgBxKoUxF5e0vU8c8NRrpcQQi3C48emnn77lhBNO+D5pk6eRv48in6QDk81G2nb5btpHB2o79Hd/ DX29q7VJn4He9SRtG3kG+XW0ZXYwDsd2ZwBc3mHg9Y0Ct28E+XckeMuwf7O0Q4QZUOfqGfJe/8Pp dH6kLbXwCculFBQE7HREg9frFUXCetdBJNxHjGZXIYpUkkgMcJH43/SgF4mw6wn1vPzAqOcVz5HI a48ZrUxe4Ryy7+x5I1Rasrx0GfyBoeDzCyFlg83NzXMbGhqsV1qKkOkz4KxWKbRTf4V0dvvD0aNH 9+W7LDq6u7ufJIYVKlMnUzW6Ix/bWPIg1xQcjLaWpcSQd4LDLrZVkLxzsWTD90uHbsii0ax9t8VI udgP+I/NnsisZbFT322UkW3DLa9qwesfzhc/ROp8DjH0Uq+MDCBf314a7w2CerzxP5h+KZ6P0pWJ 0OlcfwbAHGjUVsCkDSX+Fc/Lf0+cK3FZpg0y6Yl74e+Dbd8R4RoR6gTMfUCsfULUSdPbMZNGtV38 u7Zeqs/yfiHWsMvab29X8bZfX2AqoKo/h60ej2dJqc5y9vf3j3O73YJ3XlY+Fjw+HPMjmmMZfQdl /4aITRn7jv8LhzW3P56m5YtE8yHhFYn9puUNxmaHI1qkAknQSN9IOBQ/VzjWIYRJWpi6ts0WPQ40 pzeshRFFl30KkSXLyVhY3AqIWUZsGc+z+Ont7R1O2ucvybv2U/K3dM2fEVDbAT+B6gPiaZFIEAb7 NsFA/2YYHNgKwf5tGvkQHGwhnzZN/y2ShSUY2Ac4XNVaJAJO5CB54HTVgcszRPu4vcPA7sgqebSO fF4MhUL/vv766+fOmjUrnO8IL4XSx07XYmThcB7faJg4/V+FKI5C6eLjXAoENjU1lQ0ZMmR/Pn3I yFO1Tymi0FudlZeXbydleIl8PdEkG25jeXEhBMxkfVNdw75w5PdeyHtZsoT5sdmkvMFut9uIUSTU I4bB4kdBwSoK2F8J7be64XjtU0LQ1msXuhDpQhYVhRgx/tf5Lkqu8H6hC1BIYLg/+ecm/AwMDEwm zvNJ5F3HFwxDV1N+6VE00a1FEBivzMDJzFCoG8LBLgiT7+Fwv7ZVuaYBEdF3EbMD7uCCUUI2u4eM Z/jxgt1ZBg5HOUmzvPNDuhggn49I3/c6GUdfIu+BJgyD5MKsWbNyfW2FHRQ7HdEAknA4BYU08E4u T15XV3cwJJ95LylgGH2hQ2lJGR4hZTAiGj5vbm7+eSEEzJYuXeqeMmXKQfm+bo6R03dEhr6+Pozh VnLXChmjEFszotNDjHthe6NSw46oz7AjgTyfuaX8fLIJt9u9nPxzDX56enoavV7vMaRujiZ/HwZZ HEtsdi84yQfELb8LCVyPhdpVc9E+i23l2xPdFrWklz0pFBF2KqJBLrKkoJA6CqHPUOLoXrRo0SfT p0tDlPOGhQsXvjZt2jQUieLXvOA2lt+rr6/vKkS5Jk2ahMKf+d0DMsfI9Tsig9PpVESyQjbQ8f77 78+bMWNGXi+6o7TfYDD4DrG1Cl2MtBCLitohnoMRBgcH53o8nkIXo+jg9/tRh+CR2Adi0Q6HEMcb x2f84JYKpeo3YbQCKsp+HolEPifj88fEJltIbDJtTQeO1WpLSoVcoFRfmLQgE1lSUEgDvatXr/4w xyJhO5qhM1cf0AoJLAMZZJ8gXy+gkvO+jSUPYtweVqhr5wiDLS0tc+vrU94uKyPs6DORCnnDezNm zAgmz5Zd7CDtd73b7V5Z6EKki/7+fnQmGwtdjhxik8fj+arQhSgFxKId8HM//o1LWmtra3cn4/Ve 5F1F8QtUicQouroCFpMH6mB9TT5fks8SYu8sC4VCS9auXbtc15zRIxYKPfGjsHNgpyIayMuF4egF E6NT2GEwJ5ciYR0dHdXl5dp2CDtMWyWD3VvFEqoZDAYfcTqdOtEQCofDP8nnNpYykLo5EHag503w Ub6jQ2IzkahrsiPVo0IBQPqr/+a7v9qB2u8bhS5AhkDVzRsgah/b0/wU87FzsldVOxdiulwfxT5x dHZ21vp8vknkHcaI6XGk70CxBgwPGBb7IBGRDX8LyU8U8dwS+2wkfRUKNq4j/64dHBz86uabb96A oo36ATqpkO/dcxQUdOxsRMMp5J9TCl0OBQUzxAT0dqgw+mIhGRAocEQG5fnk67TYNpavFLpMpH6+ U+gylDpi4nMjCl0OhdJHIfqrWPsdmfcLKzAg48MC8s+CQpdDoXSAQtPknw9jHwFIIjY3N5eXlZXV kO8VpH8JkI+f/OQn/3rJv7iOBdcZYtTnALFLUDuhh/yLn65gMNjW1dXVhkQHL7JK91W4/EGJNioU G3YqokFBQUEBQQbvR8kA/R4Z9P9a6LIoKCgoKCgo7JiIkQMdsU/KcLlcuFMGlOp2sQo7NxTRoKCg sNNh+/btD86ZM6e3ENtYKigoKCgoKCgoKOzoUESDgoLCTgfUD1Akg4KCgoKCgoKCgkJuoIgGBQUF BQUFBQUFBQUFBQWFrEERDQoKCgoKCgoKCgoKCgoKClmDIhoUFBQUFBQUFBQUFBQUFBSyBkU0KCgo KCgoKCgoKCgoKCgoZA2KaFBQUFBQUFBQUFBQUFBQUMgaFNGgoKCgoKCgoKCgoKCgoKCQNSiiQUFB QUFBQUFBQUFBQUFBIWtQRIOCgoKCgoKCgoKCgoKCgkLWoIgGBQUFBQUFBQUFBQUFBQWFrEERDQoK CgoKCgoKCgoKCgoKClmDIhoUFBQUFBQUFBQUFBQUFBSyBkU0KCgoKCgoKCgoKCgoKCgoZA2KaFBQ UFBQUFBQUFBQUFBQUMgaFNGgoKCgoKCgoKCgoKCgoKCQNSiiQUFBQUFBQUFBQUFBQUFBIWtQRIOC goKCgoKCgoKCgoKCgkLWkDOiYcOGDb76+voGu91eYbPZ3Lm6joKCgoKCgoKCgoKCgoKCgmVEwuFw dzAYbAsEAk3keyTbF8ga0dDX1zfK7XYfZ7PZDiN/7j18+PBR5F97ts6voKCgoKCgoKCgoKCgoKCQ ORwOB7hcLgiFQl2RSGQ5SZobDoffXr169RsTJkzoz/T8GRENdrvdNjg4eCz59/cej+dwUMSCgoKC goKCgoKCgoKCgkKpIEA+++AH/frx48dvj0Qij/f39//Z6/WuT/ekaRMNwWDwwFAodBf5Oj3dcygo KCgoKCgoKCgoKCgoKBQNaskHAwnOikQi97S2tl5dU1PTkepJUiYaVq1a5Rk/fvwtDofjHFARDAoK CgoKCgoKCgoKCgoKOxpQZ/H86urqH4VCoV8R//+tVA5OiWjo6ekZOn78+P+Qr3uncpyCgoKCgoKC goKCgoKCgkLJYZjdbn89HA5fRf690epBlomG/v7+cT6f77/k69i0iqegoKCgoKCgoKCgoKCgoFBq cNhsthsikUijw+H4vZVdKiwRDT09PY0+n+8NUCSDgoKCgoKCgoKCgoKCgsLOiPNCoVAP+ffyZBmT Eg1Lly51T5ky5QXydXw2SqagoKCgoKCgoKCgoKCgoFCSuCwcDq+02+0PmWVKSjRMmTIF12Hsm7Vi KSgoKCgoKCgoKCgoKCgolCRsNttdAwMDH7rd7mVGeUyJhmAw+A1cg5H9oikoKCgoKCgoKCgoKCgo KJQg/C6X6z673T7DSK/BlGhwOBx3gtrCEkjlwefz5qFWhaX8gfJymD59uun55n02DxZ/8QVs2bIF ent7wO8vg9FjRmvH7TJ5ckrlC4VCsHDBAli8eAls2bwZhTuhrKwMRo4aCdOmTYMJEydaPlckEoEl ixfDF6RsG9ZvgK6uLq28gfIANDY0wqRddoHpe08Hj8dj6XwrVqyAlStWQnBwECoqK2G//fcj9+pP 6f54fP7556Rs67X7ttls4PP5YO999oG6urqMzktjwfz50NEhbhdrs9nJvbuhoqIChg0frv2bCQZJ vbw/931ob2uDcCQMdnL+yqoqOODAAyzXcTLgM10wfwF0dkbvB+vM6/WRZzkJKskzSQUbNmyAtWvW aHUfPZcdxo4bCyNGjLB8ju7ubvjwgw+0toVls9sdMGRIPWkb+5Pv6Xc32E6XLlmitd2NGzaS++3U 0rB9NDQ0wPgJE2Da9GlJ7xnbK7bbaJut0MqVrM1u2rgJPvzwQ1j99ddau3E68Z6GwOQpU7U2j2Wg gWXDNob3nw6GDh0GEyex7/X6detgDXk2snOSvlwrw9Bhw8ixQ9O6JgLv7eOPPtKeIV4Hz4t1u+9+ +2ntikdfXx98+sknad9nLXmnd911VyYN++KNGzdq56yvt9Zu1qxeDcuWLYOBgUEIBMpg/wMO0PpI GczefafTSY4PwJixY6Cc9PPpAtvJ0iVLYWBwQPvb7XLDlF2nwrhx49I+p+wa60k/yQOfk4tcr5z0 6dhG68knU+B79sWiRWRMW6w9m66uTq2+sI4bGxvJezAZ9iJjkdvtzvhaCHxHN2/eZCkvlgPfQbNr r1q1CuZ9+hmsXbtWK7vb7dHek1132w32+cY+2nOnsbVpKyxfbjiBkxT4nEeMHCkvy8qV5NzLtbEB gWXZdbddYcyYMZbP39zcDMuWLiPvSFj4jRiFWn9WW1urjWGZ9Lk6viZtbf7n87U+qL29HSeptGvg mDx+wnhSh9/IeKzU0dTUBCu+/FLap+C9lZH3E+8Nn1827g3b2oIF82EdubeO9g6treO91ZMxayKx rfDejPqSVLF50yatLRr14V6vFxrJfQ0nz80K8Flg/9vd1Q1uYrfsuutuMGr0KMvlkT1XHEew3832 c922Fd+pLw3bbCbPFcfFdeTdtgLsH/fee2/wp/lM8b1F+6alpUXre9AON/MHaGAd4/iKvoY+vmL/ ieNrKvhi0RfQ2tqifcdzjCZ9RzIbDW07tP3RtsM2ZlRmtNvQ39BtwGQYNWoUGS9FeT9sW8vJmDw4 GNTGZLxHozF14cKFmo3MA5+V04ltowzGjB6t+Rjp4kvS5+J1cMyk33McI9FWRh8jU99lB8YhpG/4 Cfn3SdmPhkQDaURHk5d5/5wVq4Twf089BXfe8RfL+bHxv/n2W9LB5+233oI7//IXaNrSZHj8BOIQ zb7u2qRG58DAADz15FPw1BNPkE6l1TDf+PHj4exzz9WcVyNgp/HM00/DE//8p2nZEPiyHfvd78Jv T/tt0hf7nDPP0pwqHeeefx787Oc/Nz3GDIuIMXv2GWcK6ZMnT4aHH3s07fPSeP211+CPV8+ylBcN tUMOOQRO+MGJMJp0dKniH48/Dn+/9z4h/ee/+AWcc965KZ9Phr/fdx888tDDQjoO3ldcdSV865hj LJ0H28Zdf7lTSEcj/LF/PA5jLTpJt/3pVnj1lVeE9Msuvxy+f8Lxls5Bo4c4vU8+8SQ89+yzsH37 dtO8aKB8Y9994bTTfyc4sDrOOessxtE89zzSZn8hb7No9P751tvgvTlzDK+J78spp54KP//lL+Jp zz/3HPzt7r+altUM2O6eee7Z+N8dxED5xc9+rvUJyYDGGj5zLE9NTU1K173phhvgnbffEdL/eM1s aTt6683/wnXXXpvSNWigUfv2nHfjf2/btg3OJn0KjXvuu1dzYs1w+aWXacamjjPJM/7Vb34t5Hvt 1ddg9ixr7z4aHyee+AP47nHf04w5q0Dy5bRTf6uRNTTQEf7Pyy9lZCzpQIcF2wMaS8mAxOZ+xMj7 /vHfh+l7p7ZzNba3f/3f/5Fx6EnY3mz+7iFBg+/3KaeckrYRj0BH7Fe/+EXyjBRuuOkmOPyIw6Xn uvXmWzQD0wjV1dVwwUUXwlFHHx1Pe+D+++E/L76YUhloIDl2x52iTYH9zm9POVWbLKCBtsR/XnlZ ICyN8DvSvjZv3pw0Hzque+65JxzznW9r95dKO0agPYNjy8qVK03z4Rhx2OGHwxlnnWnZSZYBna9f //JXUqeDB9bVNOIsffs734EjvnlESs4pXgftgEcefhjWrjF3UPG9PfKoo+D0M86AIQ3pk3b4zPGd tTKhVUXeWXxe2IeZTbA89MCD2vupY+KkSdpYnQzvvP02PPzgQ5af6+lnnpHSZAMP/bma2bE6os91 mvZcDz/iiKRtFseMX5J6RZLEKi659A9w4g9+YDk/jY8+/BAuveQPTNqrb7yuPbNkuJ6Mlf97739C +nU3XA/fPPJIS9d/7NHH4J6/irbFGWeeCb8++TeGx2GZv/7qq/jfL5KxCAklHlcQO+2Tjz+xVBbE HnvuAfeR/pLHxRdcyPRRaCOhXcYD+5grLp9p6VpI/B1/4glkLDveUl+G4+MrL78Mjz3yqJSUp4Hv +dHHfEt7z7M5qbmjgPi9V86ePfv/Zs2aJRgdhkQD6ZTVkokYtmzeklJ+7DTR+eGJhif+QRy1O0VH jQcaPy8+/wL8/sILDPOgIXnJRRfDV1THYATMc9EFF8Bj//yHRmLwQCb5Dxdfos2iWAEOhP/+179g zrvvwm23/9k0YoI3dCPJd0IxxaukU5ABy473iaRKprBioOnYtHGjRkThYH78CSfA+Rf8PqVIhFdf Fh1uxGuvvQpnnXN2VmZklixeIk1H5v3WW/6kGQrJyozs/L1/u0f6Gw7gX365whLR0NvbqxkxMrxM nm2qRMO8zz7TSCGcwbMCbI84Y4DHPfv8c9LZXL7NhiUzLAiMYvjdb3+blNzA9+Xee+5hiIauzi5L 5TVCF0XeIbAMVkgGPS+SRkj23Ere36lTp1o6Dp0gmRGEwMFaRjR0dnVKclsHthckQXWjQdZ/hC1E S/B5jJ7pli3W3/0VpM3fdOON5F19TesHrc52vPvOuwLJgMDn9+ab/4Uf/DA9A5cGEmBWSAYEOm1v vP669sEZSiQfcRYtGTByAccgjJywApwJ++fj/4A55P7/fMftMHKU9ZlVGk1bUhuPEd3d4vuGs37n nXOORvyYAZ0fdLpooqGzM7N2zb+/Ov775psCyYDA9oLj7THf/ral81sdw/DeP/74Y+3z4P0PaM8+ GWmnHzfrqqtNCVYaOEbgvb0/dy5cc911cPAhB1s6jkcv6UutkAxaXtJ3fPD++9rnoQfGwpWzrrbU 12FdX3HZ5VqdWAG+t9j/YV3cePNN2juUDtrb2i1HzbaROkAb7LVXX4Wb//QnzfGWIRxmZ53DSWah se3hePruOyKZLIP+XOf+73/kuV4Lhxx6qKXjZNe1QjIgos/1A+2DUT5XXn2VFnlkhOZtzSmRDIiu LrF/tgpZNIqViD68/w8/+FD6G7Yvq0TDqpUrpOn33Xsv7H/gAbDLLrtIf+fbhpGtvnmT9TESYVSX /BhsNCancj0kxv508y3EtnkVbv/LHRq5bQS0Zy6/9FL4fN7nls6N7/lLL/4H/jfnPfLO3QJ77rWX 5XLtJJh65ZVX4iD5Gv+DlGiIbWd5VM6LVcIwY8swlKyamylE8uCvd9/NpKFzh4MSzjDiwLFo4ULt X0T/gGhs6EBH4cwzzpBGHqBjijMwfaTj7u5KGFfY0aFByBMNOBOKM4QyNq+2rlYL0cbBCpdR8OHE W7duJYbaufDo449lJfw2GfBF/y8xxI2Ag+7ZxHDMBfTnbRQuhvWLM+pIeNz117sthVJimJoRi4qz g8ga739A5kFFZg4HGv9oINFGtAxYt3oorxzWCCQ0lo0Mewy9xvA9qzMjOLN+9ZVXSo0IDLMcMXw4 eLwe6Ozo1M5Llx+PWb1mTUbtFmfqeZIBGXVcXoTt5CvyzuszQng9fA46cTSkoSHt6yIaLByP/QBG reB18Tnz9Y6GzR+Io/ivZ5625CS/9d//Ghpsn336mUb28Ey/lXKaAfugVGdZswl8Xvo94b1jH8jX AS61QONm1uw/Wjrna5JoHvq3bBANMuC9YLQdtgcjw/ezTz+FU379G7j7nr+ZRtThLOFZp5+hjQE8 MNS0obERBkl/vZ68d/Q4hMB3UR83shG9gTBrI3jPo0ePYdLwGc666irhncDZN8yL6RjWq/fP/RyJ 19CY4ftrQORgRI0RkBi0SjTw0J89Pnej8QCfy7lnnwNX/3GW6XiAfRsSTNhWeGDoM4aK43I4XMbJ E8DoJM687DL42733wG67757WvfCwcm+rV6+GM077nRbZYkZyoMP7+/PO15a18sDIHxxT8FqbNm3S yHca2Mdivdz/4AMpLVc1A86C40wq3hcSIFh/NJDwuvSSS+Dfzz6T8jJIHvhc/3DxxdLZavq5ItGH 7z8NfF9mXnY5/JU81z322COjcuiw8lwxSu1M0g9df+MNKZEc+rmNMHbsmNQKmwW8+cYbhuPrxx99 rLW3VCMQaWA9YkTq3X9LP5JSBqxHswmxbC4HRFgZk/H9vfH6G7R2IQO21/NIX/fll18Kv+E7hzYo 1he+5zwBhstbLvz9BfDgIw+ntJxtZwB5Nr8Eq0SD1+s91ug3BYDJU6bAw48+ktIxzz79DNNZYsf9 EGmo9DpN/B0Z/4cfehiGNhqvo772j7MFkgFDnM4+9xxmdhpnnHCW6qknntReRllncAN5GXlnF0PK L7zkYoH9/+Tjj+HWP92qrdfTgS/hn2/7s8bk5xqoZdBFGa3oTNJG7OvESMOQ6GxEAdBAo/J5KkwW y4DrNt9+67/wwvMvMA7ssqVL4Zo//lGbZUgGZF1p8PeDhmU2iAYeaEwvWrgo/vdL//lPUqLhxRde iH/HtosO+tcWoml48Esm+HtGQuO3p52W9DwYvYIh7vwAg+voTjn1FC1kljYkNB2ThQvhTfI+oDGP A40zAwcWrz//c5YJx3KfetpvmTR8B3EW95NPPmba5QknngCHHnqIcN4nnnhCe191oGHxiGRJkBUi 6/Y7/8LMXiwlbRMjWLCN6kCiBOvcSpioWXvFvgvfPzpqA4GhrRiCCZxj+8rLr2hRHjqwbp5/8QXg 4Svwmkhch02/+0h2YkQO1iPdF2GYNfa/yUIqsb4/pRw0vv0vXrxY058xWr+fCZ5+7tm4Pgc6VOvW roP3358L/3rq/xhjCr9jWOvjT/zTsJ3NvnqWQDKgds8FF17IOFlorM3931z48623anpEOvD73Xfd DTOvvCIr94ahyaloZmCZ+Fl/nJHl+0Hs5x995BGBZEdC++eSJYA4PtKz/Lvtthtxbm8U8skIFuwr kGzVwbcNIzLPCnDWF0PNEdhnYv2jThRG4tH9OP527exrYNTo0YYznw8/9JBAMgwbNgwuvPgiOPCg g5h+F7Vubif2AZJxOnC8RJL2n08+mRUS8aZbbo47mXhuJDjwHcNlpbStgr9ddcUV8Mjjjxkuc7zn b38TSAasi4uIPbTvvuzmazhR8OfbbtO0VnTguHL9ddenbB8aAR0lejkTtkd8lxYsWBBPQ7IBx+df /upXGV3r0YcfEUgG7C8uvPhiOOhg9rliOe64/c/MbDC2neuvvQ6eeCo7z/X6G28k9uxh2nf9uX72 2WdaBCm9nAV/u/rKq7Q6l2kByPDE/z2V1lLXXIInGbHv1SPf0H558/U34Mc//UlG18BITvQxDjo4 vYgiGX5z8snwuzNOz9r5kgGJgBde+k/8b3z+c96dA3+6+Wamn8YlF9jHyzSp/nLHHQLJgBG5F5P3 nF8+iHbj7bfexuTHyKObiO907/1/z9Zt7Sg4ds6cOc4ZM2YwhrmUTCAdyhH5KdPOAxQio3HwIYcI xiQa2zhgmjGzKDLDh/ThIP/3Bx/QIiNo4FrIk085hTg1J2qhnzzTjC8QzjDTQGPxjjvv1GZCeaBY C7L1OOOFTJ8ODLNDEa1cd9yvvco6qRdedKFmFOlAlh2Np2/sm17oolVgOBaGKuIH14JdcP7vmZmb 9+a8l7Qz10MOdeC6wzPPPJMYqgmCAg1W7NCyLUCD7WvVylXxMM1PP/lUEzczWl+K7YQe2L951JGw fJm1ZTY0sI7QWNaBBtzhxJB49JGEI22VaLjlppuEEGN08o2ORcMHxY3w87szztA0EpAwTBey+//p z38mpOE7+IfLLhXS8V2XRVPwjp1RvnSAxOHNxCg//rjvM6QnCvglIxp4JwidEAwdpNf/IonEEw0I 2TrP8grRKcxHVFSmwNlFXCKCBiBGMehAhxqFSA+dMcP0eCQk6LpHZxWdBNoJf5W8A6f9Tlyrmk0g GY1iovjB8eHSiy9hdArQQEOH8pxzRZ0Y7NvmzZvHpOF4hg4f72Cgc3LIoYdoYpAn/+rXTAQQhgOj gVqI9a7Lly1l/sbIGRnZivWD66N54Pgoa6+oecDkI+3Fart+jSPyUMsCNXx0EsiIzEsVuK4eZ+zw 893vfVcjAlCfSYe2pI607fsfelA4FmdV//EYu8Yf7Y8HHn5Ii6DiMWnSJC3C73zSjminFMcTHN+Q iMwm8Lngkhz8fO+447RZTZrcRiIAnYY77hKXsOJy1Gf+/TSTNpY4rvc9cL+UxMJw/b/de682o06T txgJg5MyqQr4WQG2RwzbPu6732PGP+zDMwFG0j7+2GNMGjpoD5A+oKZWnEXHctx5Nz7X8zTnVQcK LmKk4ZFHWQvztwr+ud58443w0n9eiv+Oz/U28lyxrZUi0H6m2xBO9qEo/LPPPBNPw3acDtGAE2X0 xORf77pbE0MuZKRgNoFtA9tbX1+vRnTRwGXDPNGAdY1L02mgdsm9990r1Q5CDZt7/n4fnP7b0xjN EhwvkUC1stRsJ0LlQQcdhEwN46QaRS1Yk0hVsAx+/fTWJnPBRSPgujwel82cKZAMNJABRDErHs89 8yzzNxogl5NzyUgGHRieh4JOyCDTePu/b8HJp56SrPhpA5d44Jo8HWic4gwN3gPOAurAzjjXRAMN nL3DaI7fkU6IDkdGcUIz0bHAQQAAIABJREFUogEJIwzB0oHO/7e+fYzGtOoREjh44qB97HePzWqZ fV4fzDjssLgBhuV+5ZWXNWZaBr5TPvbYY9MiGt547XXGycLBAQ1NmmjA3SJQ8NMs/BJVsOmIDMTR 3/qWJYICgQYxEnCZYECytAnfaaszKoUCOj3oGGCYtA4r64J5Jwidsj332pMhGjDKA2e6+N0wdkTI 1mfKdBd48LNWRx19FPT09jDOG9Z1rokGGtin33LbrfCzH/+EIQKef/Y5rRy8fsuz3LiBzvVlMy83 NVyRbDr51FPh1lsS5AzO0mF0yI9OOilLd2Id/FIIVOVHXaVMRCozBZKsOpCgOepbR2sEH+9sZEo0 0MBndvEfLoH169cxs9k4puLMPr+8AckhnuD9/YUXSkkGHWhX4Kz4L37KErFItGebaKCBdgxGcmDE Jh2lgBM1uIyU1xR64YUXhAi5Sy691DRSBt8NjOJBrR4ab5J7ywXRgMBoGAzZpmdYrfQ9ZnjlpZeF ZUSoESYjGXRobeeSi+GnP2adX3yu2SYaaGh26hVXaLuA0HYARtngEmWZDlmxg373ETi+7jJ5F+bd x+eNuyelamN893vf0/RXdOAyIiS3kWDekYCEAA/Ze4GTTPxSnEsvv8y078eJwPN+f762tIwGLidV RAMLu92O/IE50YBhD4ceemjminoKDIZwoeY4I4S7DeAsrFVmEQ0hnH2mgWvC03Gs0blEkSQaeB4r IbvopKJxSQ9M8+fPB7mbmh2gSBptBKAwjmaMkQ6ZJhowugJnkPmZpVwCjTEkFVAQSQeG1WNotZEY Db+EAFWrMS/uDIIREXS+bBMNiGO+fQxTBjQ0ZEQDdtQYgqYDZxTSXVsrG0zRYMJZIxz8dGC5zIgG nBWmgYZHtnbosIr6enGWEsk3nG3CLSSLFfje82HgZiSlDv7ZYVQLCgbibAEdgo7PbuKk87NT2CKG TJCuNsnMfJSISQh1YVQI9rf4HtBEA0aL4WyJzHDKFVBXCHcDosWK8d3HrUQPOPDAeBo6mXzYPJKk VtrQ0cRxvv222xidG5wRKgTRMISLMtDXmONuT5mudU8H6AjT5B8SWUjOIBFFOxu5IvMwyosPm8dx iO/r3//fXOZvrMdDJEvAeKBIM84a0u0fCeNcAyPCUMn+/HPY8QFFbXmigb83HJeMRBZp7L7H7tou QCgMrWPh/AUmR2SOtna2/8k0KmjuXPbe8XzJorMQ6PTijl+0kDi9rCNXwOf6u9NPh3POOptJ/997 75Uk0fA6RUCjXXvEkd/UngG+X/QSNVxyiCLhqWDPPfcSntEDf79fi8zbkbZrbGtrF9Lq6sRxiX/P cRw22oGMBurp4TOho5cX5Pg9L0WQ9iusuROIhn322QcpTOMpbYW0gKGluO0NDQxNfYs4cb/45S+0 Gdlkyv/YUfCM+4EHH5RWeXAdMK+cbXVrMwwfRqOBDqVeS20dlwvwAmpogCHQ4cEoAJ2hRLEkVHVH RzqfQGOLJhqwPLg+VbYXMRIQqDehAwkGXYsBnQ6aaEBD32xZQ7rQREhJJ6xvSYezPrg3Mj9Ti049 TSh959jvpHW9VZQwIgKNAV1IB+8Zt+DUgVsiXnjRRYaRNXSoJmLf/faVhufnErjEiF5DicD7+8lJ P4bjjv8+nEScp3RV9XMJ1IrhiQYMozQD7wSh86HvSoAEGR1y+8Ybr2ukT7Z1UooJ6Cg/zoWPY1vY PQkBx5M1R8b6MAwvx2VE9D7v2N/lk2hA4BjF74q0bOkyhmhAR5ePzkNdFCvAmWHcU50mFdck2Tow VzjooIM1YTQ6Cg1nun904g804gO3SMtnn8Lrn+jjG/bHvLORCzIPDW3Ug6EFDvnlnlhX/M5UqWyH inoVNNGAS0KwL0KSK5cgNq02I0kLKfL3hgTa19zuKancG9YfTTRgf4m2GpLg2Qb2I7xGVyZaTtpz 5epjmsRuMcJuu+/GtAskYXEphpXtHDMBPh90lOmIPP4+SgFIttJkvU4yInBC7cknnoj/hvbYmWef ZSpkyQPbIZJtF12QiGrG9xzHbdyqcUcA2tuPPcpqWeFkIx9tgLY3r0lndfxC4HIpern5mhz7PSUK QSlZ6AVJx2hdUWknBXZmBx9woPS3PYhxiIrKPI77/nHazAQvoIfG5Q3XXQ9333mXJhD305//3HBG Zf36DUJauuztxo2bhLQRI6wLkOFMJk00JNviLxMgKUJHLeC19e2McCZtGulM6DXDr2nq3PklGiZO nCSkGW3Dho40baxjhIjuVKOxT0eLaPt5v/5axkJPPP6/vfMAs6LK8njRaCOgYARGENQZ3cU8iqir O6OiI4yOIiLJAGNEgoBgQJFkIHaDkhFRUdKYHdBRZ1zDBNdZddcIokgQFFEMYIAGeut3mWpunbpV r6pevUfw/r/vfdCvX7/3qm4653/O+R8cQRx8XXhw3rx5AaJBL5vgcPMExZIi4GSdubWpDUa1TjRA gCHWZup7T1nJCs2gA0ccEXTwiAgveC/c6PjZ/j+LFbEJAwYOEZUx5eW+5xnXR/7wsHqQndK5S5dt 1gYJsbJvv/lWdY1hfUKEUYqjA2c2V6u5gBPkG7vf+IiGLLulbA/YsH5DVRZZRcUGZ/my5c4fn3oq 0FaYHuA4M2FQ61iUTejtylgDenor3XX69O2rSN1iAVV5yG49Nf4zsYetFGtP/d0B8brEANadTjRk dW60+s1ZxufZS2ljK8UXGzdprHRJdG0CwN4z/d57ldFKWj9957NomRwFHAFScD2Q4eiVFLDnSmej UGQe2ZG6/pM8vxgrmV4ft0MQYOwl1rjvWWiigfuE8v27725t8yznNT/LdOpGCeb1/uLaWO8QKfmS VTjwmzbRJWaz6xx+pUou6U6g49B/OzSnmHMU+J6ym8UBCcRo6UwmgSNbaKKBtfFz1/7V7VA5rmGg TMzkrLP2Zs6ZnWhe5wt5vp4hzld97UM4EmhJ0kKV85+M22NcO0TPNsH2a9OmTd7aSPffd1/AyfeA jXRpl855vb8ENqB+JkPqodehk5iAvVtqXunach6SrHO5h6muF998k1n3pJ0EAQ7BRLfG61P3E0dY m8OwnuI4kvQOpy2KSa0fZp9a9UcfedTp1ae3qquS0Gv6PaSd4OsM/e332CO856yEXMDcj0Ix+M8Y 0rZ1sBnrRAOK02nVudPCRA59//0PhldGO90YxmRHPP/cVqHIZ+Y/nTnRAFq2bOkjGtDZ6NuvX1XZ CTWBeh0oEYQ07Qox4NBn0KGPIenjMrWPe2QiGlgDsjXfvvsFxxniztSiTAeq+vmkWbbr0F4Z32GH LD2xeZze4nTnxptuKvphpIsVmnCcO54o4kdFR6QT5KV1eiCFu8mBTXxioYzdzkI0YIRfG9Eyl/tB yVGni4MdCHRgHOot4Yju6iJV7GE60bAl6+mvBa1hl+BacPr074nAlg6ZBQdqR/QqD7xWnBvrQ1rd JkXYeUzG0apVnxvXHjXonLvScQPMe55n7l/Qtq1y7AtF+lDCqJ/txzU7zqd5IJ2NQpF58h5J53Od Yeyj+tRL1KoVrIGWeg+FQl3h9P7wg1+XZq3I8gKJrq128LVZzG2ybqLAPjJ81Mi8hP3WrV0XeK72 7vG1SmrVDqbfh7WwzhrS7vrhh3ifG9Yuk31kRYIW2/mCwIRemgophr3goelhTdV30TMK0flJQjR4 5lLP3r2cy7tsLY9ljKZMnqJ0TPIB9ljY/rtkycfG5/MBZ1CuMxkdG1MpcP57WHCuF2sP24EQWFwB r7CiomJtMaMoOxuinAmcNFpa0u5u1syZRqESDEyUU1d/vjogrrjJ0GO3mhM/hUqHaaMN661uQqWB jyqUiq0UUNMdc4BDSrcGr6zEc2xzGf9ZYtOm4NiYSBeUrXVWGQNIamxgWOpEAxFAHP6wdmNpgaqx 7iSSgsih99uzt2hCBEQgU2pF0AlEd17o9iAPcq5ZJxowvk1MselAM83bjVrL0TDIEoI0II3xhBNP UAahTCv28MJfXnAWf7RYdYZJ0oKvUCDKdv2NN8TqOy6dIFIRJYF35pm/cabdc0/Vz6QWFqJbyvYG SnZ69+kTqPU2IZga749A0rFH1rCTIl9MogHI9VW9un8P27zJYKAnODc2b/a/thjK53XqmiPm7M+0 tCSzacqkST5j3gNnCQLMpNXfNe7ugnzfKOIZmJyNQrQ+lmMvz69NJpshSVzKME+KpXwvbadd5Lw2 fLck9lCxrw27od/11zstzmiRKI3eBCLeASS69G04rpvkuOb/uXXqFC8gQJah3iaZNH4prEqJ3f3T 76v6GQFdzu9cpdYSdJ3aYltuJVbZR7CTD45xhqVBsYMr3D8I5LAA0ibD+ZVsnQefKtlJundkiACb E/CEysrKvhw4cCC0YPHU9HYwUFs+aMhg4+/23jtaFIvN4bIrLlfRUFJwSbE2pfOQSt7cdWB0kZIa uwU3FlNmQhyYxBKTKBev/db/ubCC+R54JtCBQE/XJaVPOtxsZig86+KW3gZaLHxlEIczpYT+SQgZ QpLIQ5maee6nfgBxPVkTDaBlq1aukT256uf58+YpogGW9tlnt2YhkBZ+6mnBDIM4kMKXZwpDGmBc jx83rmrTVxHF54km+tsumpxXva7YAx089tDu/wb3evT2fVmCTI/7ZjzgvPbaa87Dc/+gItHy8KKW b2z5GOfWQQML8h1MqFe/vjK8yO7RS3UgfXBuqL3PlYEUdIKCauIYLzrRQKQEUVaPsNqRwdok82BD RUWgUxDt+phTuYgG1hL3w4PMCvFA+YRONJANA8lTLHFCnGpJvsk9bDdDeUiSc0NGlLJKmx8/cUIg WwJw3ubKwtrS/eY0RZD9Yc5c4z5BRgqCnaTjZgmvTMwD65FSusB3FM5GIVoff/31V76f95Bjb7IZ 1iWwGUxZlAUum/DwtTifpQNkurbvv8vdjcfDt2uDpHUW1wYpTIvUNaJsBR2Ep+fPU9mPSR1OiRqm cf0+vS0I6hSJUJcCgHH3EzL5ZNtDwPqjk1ixEPd81dc+6569Cl23pCAwwt969gB7/uSJE52Ro0c7 1VKWYtFutM0F5g4WjQugU0XWB52zKjZWKP0y3dZCZwwh9jCioWbNPP0eQ0bE9hA82s4QcGgDVuag QYM2uwOHals6afmfADC2iMrmAxzJjp06Oe07dFCbzd1j7wqURtC6UScaTPV+Sz5ekurzTSrhuiBN LtAOS8f+DQujtC/b6rlWuuqNLeH1GveA+OCHixYV7dBYtPCDwHMNGzUMPCcjm2h0mK4Hx14nGp5/ 9jmn57XXZh4pOMs9rHSiAedp5QqyLt50jcitn09kNaoGPQye06mD9166NCgCx/vrwk5obUiigU2d VG39u71v0GLo0LGjenjgQDrPUI6UJZo3b64etKCCVNDrncFzzz7rXNevr9EhKgRGjh6lyCkc3Rn3 P6Bqzz2QZbG3uwdQKhMG6QQBaiMXLlgYeK2s7WeeF4to2ByStqkjUdRCA2U5Dz+2RfV/1apVzm2D h1SVaUGGjRw+QinOM+5h8DI8POAc3jNlauB1kjDz0vfbXnhhqu+eFETtpdiw3MMQDJT4dKV7bsTU zZNCXNy7LHCoO8/zMfjYV09v0UI9ILfLRo1yPhB7OhpLWRMNlKtVaNlX7A30uZfQxSBBIVof081C RyMx9nnbDMv8Y0/mbDHKG5nTUuixobBXTNdmCgCFQV4bDm+SlOwwDB46RBHZzJE5s2c7E8dPqPod ROSIYcOcgYMH5/UZ5jWd4NqFLYizXi9FiWVSkIEjy5Dj7icH//znKotsWwJ7nzHU8d+vvuq8+867 gddSeq3vE5yvaYgGyJUL27dTWdUe6MCycMGC1GXPrOF8/aEkQPvDO5MJmtwx9LYqW4u1Xj66zF3f DZ3/ODkolG8KBKvzKybk+YVPZisA/HBtrYUy6Bw2s1DasERDEQA7h0GOYvmlF1/iY60XLfIbOgcb RKkwemWJRRw0Nmyy77z9juN0NLxYgJT2Dxd96HvusBjtYZKCjVWvDwfLly1TjzhgM+7ZqzhEwyta xwlAhESKiL333nuB745jzyMXcEJeczdTXQE+C9CK8aijj/L1o54/f57z+j/9nR3SdpvAyZK1vhxs cYAAKPdLdm84/PDDfK3YuC/bkyAPLb/G3H2XapenkyzK4P1osWqHVkxAAqA6jeGsR1AeffgR57zW rUPZf+kEAUkahUFpErjOUb5CUxK7lgY7kZi0ayRkJL3mbslJMyLjI0aPcjpc2K6qxRUERvno0c6s OXNCxfkkuUgEhT7mcUA2ULGIhr++ElyXnuiuhwMPOjDwmnfeeds5+3fn5Hx/nFLpvJHOu72B1rpT p01zul51tU/FHmc/6wwTme3F+8edG6zlrIgGIoEyWnf44f6x50yr36C+r+MBYx8Xr7/uP1Mgh4qR Ys/5IPcxOa8hGmQW4buaAHUUiAr/n2jp2DTjeY2jiU4T914XMGVvad2mTWQ76FzgfJBtit8xOLth kPYL4pTFGFdIb1kfL8d1ewYksiR2CQDEAXMafag4bYUl0C5APFFv0Xyvu9+VhnT52p6Boz9s5Ain Y/v2vn2pvKzMOeHEEwPzsMHPGvjE1sE7Mdc5Y/WWyHbLep3vDNi0adM/pS1kJBpc4+mFatWqJfde LVIDZ4qezTrDKTdR6qhkCyraHxK9TypqR/QH4kJnhFE0juOwPfH4EwGNB9qFZQ1Vp59HHT3dGrr3 7FHwVnsYGTDROugeITc5aVQmBX+fNdEAKJ/QiQbKefT7TivDJK2+dEgnKynQ58BJ1vGrX5/qIxo4 NO6ZOtXpe/31eX1WloDRPcd1vqRjvmHDthMOuqrr1c6fn3++yrjBSSYdnKiZCfnMV96bMqGsRUyJ ZsjoDnNX7+AgQZcSmfFkUsCPAyLOGGpownhA4wRCzaSnsObLNa5B/Frg+bh47933nGVLl6kuCYUE Du7c2XN8z9FWURIBOCSy3eJLL77k9OrTx5h+rkN2eAAnp2zPXGjgfJ3V8qxAu7z1P7rrNyOegahx PuVcWZF5rFVThs2vTw125TnqqKOd5z/bWuPN3Ccait5PFCgnky0ZizH2RL2naSKrgHOZ81mCjmF6 +SWBgThrjz1Vkp25OvmkxeVXXqHKG3VHiWy10eVleb0vnZF0ogGCn+vPRQRir0ry8JRTgvc2a6hx neqfs9h5v/pV4T87F6QODTCVFQeydRN9xmaVIUlWdFJAqF12+WXOmLKtHbMI/tDufEcEmbB0fdIz g1d8skIFKWXWB3MEMkpvkQ55wF5M0C0KELt6ZiLYXs+vbYjV7tn5lvQPjUTD2rVr59epU8fqNGQE DnIEXDjcotJsPhMHcYMGfmOYzeqsli19CtS899DBQ1RLzbBUPRwL0j5POukkX3S4RYsWPqKBRTR+ 3Hjn5gG3hH5HSA3a2eggykErv6whnVTSwKNKIb5YvdqXro46N0Y+zGahQHnGLTffHHi+Qyd/aggH 4581gUdAapcU/tGBkau30Xv5pZdVNDTr1HvmAelmngMqyR1aWqbR34Bxl04WdeilpeE1pRBnusHD 5i6Jhla/beUaxlN8xt0jDz/iNDnwwKJFf+loQQ1uVPqlXM+ggaEutFjAScQZ1sWgOIy79+gecFZM ThCEVFSkiiiLLvrJ+s2aaGAeYvzq323+/PnORRdf7NSrb3a47rt3uu9njA2cirQ459zfKQ0dfZ3M mjnLSDTQilAX2SMCg55MGBBmk/veM888XdB+56yjG/r1C9SxU9ZnWventTjdR0pA4uCo9ux1behn EB1G/0AH2hbbqvUrcxWiPSp1X7bKg+DK0hiXIseszyhCF5JSFwnOgsxjbuJw6F2bALZKI0OLQ8QH ZZcO/n78pImhqdfMj/Iyfxtg7uXZ5+TOgskHkJE4H++7DrMOat5N48616USDylYqK3PKxpSH7nsQ PbIzBKVRadLa4wB7oaV7/j3x2ONVz/Gd8yUjKRmSegGU/01wx3XXkEg3+wXZXDqYA4UeV+yU4XcO 87UrBZDNWWfQpcGaNcGWvbLsFCJHfn/srKigGMEsL5MOcE6kIRoArX0JKOmlANjLOyq4d5MnTvIF FGY9NNO4DlnnOtGg9sDycmfEqFGhdi42qV62BAjWnhER4PiJ4vHNBqbNeDLUrVv3a3eTJX+vfcG/ 1k8A1Afe0v9mFRlGoJCDTu8xjDALEVnZGvM/Tg5Gr/n7J594wsesISDW+ZJLnSuvukqJA3mOKHXp L730ojN3zhzF8JX2v8lHNLRpe0Gg+wUClbQ0u/qaa1SdkweyK2BgEeyTqfDdunePnSqHUWtS9wak pHp1thjx+qEPUJNF9T4MXAf91GUtW75EA+XdnrMAU4f40eLFH6kaWdJcZfrbueed59PWADD/uiGP MYIgUZSQExkmtEP1wBhAWJlan+YDMlggisJKGtKWTcC468wmHS6G3n575N/gjLDpeyBaQsaI7pBw 72g3R3cWHWWjRisHAm0GHEnP8GXs3norWyFI6qjffvttVfbUus35gcgPjvC9mkAioFypYUY16WnR tt2FPkeBuTt37lynR8+evtdJJ4j2o2ECuB4euO9+Z/KkSVU/s58VolsKQp860YBeR49u3RRBqu8P ZGcRzSQCqIMuA/n0eGfNIoA186Gtda4QTzyOONJfFiOjVuy5prZbOpYsWepzjp51xyILooG16O1j 3LNPVqxwXnX3JboqSJKBsi9qeU2AgEA/SBcY5Rwh7fzyK67wET6cFX988ik1L2T6es9r/XOumICc 57ygdeXvzjs3QBiyt+vOHIAgyjIlXLZtZt9CJDoK6CggLFv1HjFbH2P7eWNP20X0Rt58801F0Eq7 g/21V+9exvehUw1i2Pp3YC327NZdteXWa7X5PM5wHFYZ9eZaTZpTaYCSvH5tn372mXIkuDZZqoiN 0a17N+P7YJdBmOkEE87ddb17Oz179fJljfJ5ZDFxbbrzBzp36ZKZyKkJkOn63IQQmT17lmqhnBZE ZiH+9Lnw9ltvqX21d5/rVOcTD+wjf//b39U5rQt1g/YdO4QSvkkB6aqP62funCUQ8bDrIC8TGk/c b3mGFQuUIKLlQ+CIPZD9TgdnjbTz5PlKm9KBgwdFfg7tj3XRZex+AlGyRDcOsI269ejh9L/xxsR/ uz0CMuzc1ucpG8QDtscbb7zhHHvssb7XYrNRKqITK9i+/a67Ts0hXdwZ+wib+64xYwNZkYj61yqS 3taOAne9PmAinEPVP9w/KHcPVUs0GECk+ZSTwlPYYS8ff+rJqgwDL82NA4zIMREADJt99t1XtV0i S0CvDQSI2uCwSsDE09pmyKDBvufZ8IcM2rJRYSiwQcvSi00b/aJpbIB93MV1+223+Z4nasIDQR9K NSpcgxJywNQvFoM7CXv/4IwZ6mECm+0907cI1hFp1Q1TrjtX9AuCBYeZyL8HTyMgjZChB9Tmo8Zb By3v+l4fFNiTaehEjHKpRWPYYhjpkXveJ2uiARCtNhENRx51lDGyFQe52raZgBr/2DFjfOJ9kEVy 7LkHRASkM8A18FBCYwj1uAcQ6y7rvt68H2sMYo4Ha4k1jUI4RrxJR6TrNddk+h3SgFpe2Ubxycef UKmHuoK9dILijB3K+DrRoN6nAN1SGHuMTd0oJjJzzdVd1T5B1giGKQSvbNnHPkAGR74gIoRzrc9T Ms3uGDas6mePaNERJwKC8rhONBBNefONN1VpXT5oe75ZGVwCQnxU2ejQSCaR967drlECxjogXXnw e9rvQUSwDiTBADpddFGmZWAQzGEgSoUwqv55rF8ekEU8OOtQModIYC7JDiMYT1dedWVm35e9S98j wjqRSLAOdWcjbuvj24cOVY9c4EyCAA/b84m43jxggNOta1cfwU7L5t937qL2QebP5srNzooVK32i vR6OPvroQJZaPojrLLH2R4waGRr1Zr73H3CL0+faXj6CnDK9SzpdpOrhIUe4tk+WfxJIowYENS66 5OJ0FxITOJa/dJ0n1PU9QDhxvqTVD2Fcb3GvnT1UlqVd1mXLuKJRQzvTsHHFVrjq6qtTfb4JBOfi gHEdPnJkIoKjU3tztpYHSOu4YsaPPvpogKzTYdq309hGnK/TRPCC8zUtwXLqaaeqtZhvNy4ynGc8 8EDo75sdf7wz9u67Qn+fFdq0uUCVgupn/uyZswJEA3vcTe7cIotPP78hz3iQtbbffvWUb4bfIwOr gIBuu/bWPRZ41T0n/276RSjR4P7Ba+4gsBpaFexr7cCQBqwOSAOcG48BZ4NmI/cOLyY3EQE9KqCD 9DgOxLCaV5zC77773hlbXh6IpgPTAQhMYpKIeBHNmjhhQkB3AWNLGlw6iAahop8VPtfSruVGTFpc nPR9NmydaPC6HpBaVUhgiGI8Uwcvo15EzqTQmqmNkQTvQ6szXRwMhwNHNlfLtqQ4+ZRTFFEjW/2k zWbg4JWq7XGcLBxFDmZdYArSiXkmy46I4Oy7z77OfdOnB9YjTo6MtkjkU4JCl5UFCxZU/cwaklFh HTjytNDbHtD2wra+ekb2K6L+F7bbEsGWThCI4wSRrYE4ku4kF6JbCg4BjnB317CWdd9EF2WE0QNE yrARw1MTZzoYfxxXPevqxf96UZECXts0GbVCJC3OZ59xxpmBdGz2w3yJhjgg26P/LTfnzPggZZfM LtaeBPcgqhvBpZ07qzZrWSLqPAY45DrRwBhB8HuIOuuYuzf1759ThyAJ5PkGkRqnA0OYs5EFmYe9 MmDQwJzvhZgtZMTAAbcGCNxc+yCtm++4845QEqtQYF8a6F4bQr1RoHsMmVtky+kZO4BSQB5hoP0z ejfFEEJkD9eJBoJAlMf+/rL00mrUrt85fLg7rgMCzlWucT3hhBPUnCi2Aj8ZNLSMPjhHi2EJaetK yC4l0e8Vvvdg91MkFUYwAAAKn0lEQVTWpwPHXs/wUSRji2DZnQSBDBkkeO5Pzzrde/RI3Vr+2j69 nSt+f1nqrkyAv43af2VnkEIBoomMK10XC22YT5YvD5y7aKjc4s7z4cOGBXwoMh2iykjIfGLOFVr7 bUeDu6aGhO19kf1MKioqersHAisgv0a9OzhQKk0KXS8BAwLDeML4CZGLjomLo0xaeK60Qtr+HXHk Ec4k9z1lGz2JQw45RIkIhRmqMPDH/PIYZ8rkKbGEy2CuKdM4vvnxOV8rDboo1P1XuiHOri5OCOI4 5oBMAakqC0uZhGgw9Vc2gc0d44zPPO/81qHOP+l+utHC3MDgigM0DXSigU2ddGc+Ly4CG6LhUILl pU6T6Lz+XBjTXlLifw950Mm2TURhchl5HvhMnWjAESYt3VS/zLymZpw6fA4YE/EmwXehzj7MoJb3 q6Ra8EBBeJL7Q+ZP1GdSLtGjZw91AMZB9RL/Rh33MDP1wDZ9b4DOC6UfusYAHSY8ouFVMXZkGsVd EzIaj3AtEVdZWhK4xwkPbUiN+2fMcCZNmOg8PX9+5Bjw3gjbde/ZM2fpirxnYfcQcL90ogHjlTno 1c3+4x/++4iBEgcYTDLSJMvIcr5HPT+5HQXGlv2INZGkCwSkajP3DJg6aXKsqNhxzZqpv8lHIR/U b5DfeQxwisaOGavK06KMbErgELqM2ykmuHeYHQA+V0eciCZQzoZ7ni9atLUVJXtt7z59fK+TXQTC QMp5s+ObqT2BPSquw8JrH5o9y5kyaZIqM8m171I218V1aFq2ahnr/cNAa3GyZb6JcHo9QJZho7T6 7dmJNKTI0KQjBm2fX3n55ZwkFjYAadQmjZYkqFYSvPfVQvYfAhDYiLomDnu4JBpKEp4nOGAPzXLH dfJk54W//CXnuHK+de7SObWOkwfOUgJsMj3dBG9cCbhBHub6XMoaCATFsQ08JGlNesABjZUoqgTX 1O+G6wOdMF4V5wJ7fVxtCfYJnWhg/NkLDj300Krn5JyRtpoO9vsrrrxSlW7rIJN5r73N+mEIKcs2 j1EIC+jEPWvlujCtEw8QcDrRwN5OJ49L3TkqQZD13w9rqvawv/31bznPSuxF1jlkvEUAT1avXv1P Yb+MJBpKS0s/cG/+QHchj8j+e+04oCaVwz0sU0CCw7CBMIao3+JBTRWO55KPlyhDnw1wz732VJOY FKMkfaX5m7Hj7lZaDBAERG1gnVlcderWcTfAA1TNchy2l83w7vHj1HtR1wQh8sUXq10HuWKLCNY+ +yixIZy9Ro0axf6Od08Yr/oCR7G+HjzWkY2JjA4ikzheED2y9jkMpNFNmDxJiTRWVGxU9xdCJgkw uiANTB0v2MRr1tzN3YT3VvchV/kDOM69Z0RJyEIpLd3Vadq0aeyIDnNi5OjRzpovv3Q2ugYPJEpS 4c0b+9+kdA4gXzjMw0gOsgZOPOlENYe4b02bHhZ64A4aPETVcK7fsF71JpbfiTp60jh/XL9efedf RmhrSJAajwHM/ae2mPkQ1UaI+X3bHbcrQoLaXA7e1Z+vrlqvu+9eWzletObDac51qI+fONF1jhc4 69dvcK9tL6PGBwcx/cv79O2rdCEWLlio1gvGDN8X4+PoY45O3G6LunjWGeUyNUprqIMwDqibvstd v5+u2BIpwRg45FCzcCpzduKUyYoQ4Bpr1Cj11R9TDoXAK79jrifpOEKWE10JaJXH2O2xx+7GGlIM 0z333EsJZ7EWfvGL5G1oMTiJvkPMMgbeuBPd4z0ZI+4BJUimXvHG7+8aKg0bNay6/00PD593rJXy sWOdVas+U0ZKrVq1feTrDTfeoEhWfsdaiEs2gUFDhzhv/M/rav1gKDZqlCwLg4yLh2bNNBqE7GHs Q3wnygXyaQtLWurke6Yq8VBq/okEsldxbvAZ7A2sO0iGuGRVLjBXZzz0kOtIr8z9YmcLCXp88+a+ 59AqQuSPM4a589GHH6n/c3aiE3TQwQep9PSk9c/MRebFunXfufOhpnNMSLnfgFtvVec1YB38ZwK1 fEgSShVYn9WrlzhNmhwYeM3Ue6e56/t993r8xjP3YpdddlX7egN3jecjngdph+YOWihvvPGmcoDI tiMazvnB/Dqg8QEqW0N3hPIBjvIDD85wPli4MEAQMa/53Dp19lDlU2la/3lgPyX7CcfX6+yFbeTt LXX3rOs0btxYXVuaGnkTIA4QX1y+bLkqz8CG5AwxgcjhuIkTtpzB7jxgrR1kIPJpfY798+23a9U5 fGQMO4q9Y8htQ1UJKIR/2LhCGGaV5cO8ZFwXLFhomLNbx5USp6TaHrz+QXcvlLoOUd8liUjt7Xfe oQgp2iSS5VWrdi1lk+CQmuZg6/PPV2vHO1+bNcsdsPPQvkN7dx9toGwd73xlruro1qO7a7OcoOw9 Pj+XRplynk/9tbN0yRK1pjyx5DAblfJA7MlcBJyH/UPI/dHu/vv+u+8pG5I5FSaS3Lp1a7UWvvrq a2Wr6DowEpwzlGlAsm45k2up58LA2lX29Zo1aq5/+KHfhvDWeVw/6ieKL9y51iOqPD2SaFAv2GWX Ue6E4hQsrJTsdgwWHg5fFmBiZ3UweSACFqePedz3yjfqoAPHNk2rp3xYQ1jafPuzR4lOJgWCMbDv aZHECDWBQy2OCCGGCFkNcYAzHKVyzQGXdk6ywUe1KwwDxjORHh75AOc0zEmXwCnhu6b5viZwDWnf q7lwpqIQtQ+xB6TVAYnKgpGvo0Y0C2Q5BpBESd4nivSDHI1LkErglOe7pyNqdVCRjCNag+VqD5Yl kqzRKEDsx63FjgP2PYjqXOB8SXvGQMjnKsHhuvI9N+ICooq1nNV6zgWCAFmXDoYB+yXL/T0XIHXj Ertkt0R1PQKQsXEzqSQg+4s5rpBeheoagTMuHfKs4J15cbOSmLv5nK+5xpP3T7qnQd7qwYYoYKNQ apsvcNzjOO/Yz3HtUpBG/J1ABNmYcTOnLaqwafPmzZfWrFnTrPD/L+QkGmhVsXr16o7uwUU+Sjg1 ZGFhYWFhYWFhYWFhYWFhsdOisrKyZ/Xq1Z/J9bqcRAPYb7/91rloVbt2bfqEhTcBt7CwsLCwsLCw sLCwsLCw2NmwubKysm9JScmk3C+NSTSA3Xff/YtVq1a1qFev3oPuj+en/noWFhYWFhYWFhYWFhYW FhY7CtZVVlZeUVJSMjfuH8QmGkD9+vW/c9/8go0bN/aoVq0aDcPT94ezsLCwsLCwsLCwsLCwsLDY nvF6RUXFxaWlpQtyv3QrEhENAM0G959xP/7441M1atQY5f7/AvdhG4paWFhYWFhYWFhYWFhYWOwc WFVZWXn7Y489Nqlt27bx2o1oSEw0eNhtt93oFdNuw4YNTXfdddde7v/bu489076fhYWFhYWFhYWF hYWFhYXFNsX/VlZWTlu5cuX0Ro0a/dC2bdtUb5KaaPBQWlr6vvtP16VLl/Z2v8jpJSUlp7s/07eJ xsn0IDI3Y7WwsLCwsLCwsLCwsLCwsNhW+M59fOw+FlRWVr6ycePG5/Hvq1Wr5ri+fV5vnDfR4KFJ kyY/uv88/a9HFT799NNaLkqz+hwLCwsLCwsLCwsLCwsLC4t0qHSxePHi74899tgK7znIhdLS7Nz2 /wcl0ZI2Z4ClZgAAAABJRU5ErkJggk== ------=_NextPart_01DC5365.5C75D260 Content-Location: file:///C:/32CB10EF/file8943_arquivos/image004.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAZMAAACNCAYAAAByt5c+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz AAAuLAAALiwBDmuRbAAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAACAASURB VHic7d15XE35/wfw1y23vW4qtEi0KGkIISmMpV9RYSwzGMYydgZj7MYua5YZe5iGLA01tBKyl0KG SpFSGbTRbd/v/f3Rt0bq3nvuvedu+Twfjx7GPZ9zPm8mvc85n8/n/WFwuVx8isFguAPwANAbQDcA qiAIgiC+dBUAngF4BCCUy+VGfHqQUZ9MGAyGHoDfAUyUdoQEQRCEwjkLYCGXy/0I/C+Z/C+RPAHQ QaahEQRBEIokC0APLpf7sT6ZnAfwbf1RbW1t9OnXB6ZmHcBs1Up2YRIEQRByobqmBlkZmYiNjq0t LS1V/uRQAJfL/Y4BwBNAcP2nNrY2+HnFUui21pV6sARBEIR8YxewsWeHD1Kep3z6sZcSAPf632lq amLxsiUkkRAEQRDN0m2ti8XLlkBDQ4PzycfuSgAc6n/n0Lc39PT1pB8dQRAEoTD09PXQ27GP0icf OSihbvovAKCTRSfpR0UQBEEonM/yRTclfLKOhAy2EwRBEFR8li9UlXg1JAiCIAiqSDIhCIIgxEbe axFEC1dRUYFCduH/vtgoLCyq+5VdCC6XCx0WC7q6LOjossBiscDSrfvS0NCQdeiEAiHJhCBamLzc PMQ/ikf8w8dITkpGRUWFSNdhMpmwsLJAT4de6Nm7JzqYkQIZBG9fZDLhcDgoLioGm81GUWEh2AX/ 3bWx2YWorq763x2absNdGkuXBV1dXeiwdKCqSmpfEvKDy+Xi5YuXiI97jMcPHyMrM4uW61ZXVyPl eQpSnqfg7KkzMGhjgB4OPdHToSfsutmRfwdEIy06mXA4HLxOf43nCUl4npSMvJxcFLILUVRUhM+r JQtDTU2tIbmYW5qjS1dbdLHrAhaLRWP0BMFfZUUlQi+HIDwkHMVFxRLvLz8vH9ciInEtIhJMFSac nPtj/MTxaNO2jcT7JuRfi0sm7AI2Yu5F458nT5HyPBnlZeW091FRUYGK7ArkZOfgRcoLRITWVWI2 MTVBV7uu6NOvL+y62UFJicxvIOhXW1uLqMgbuHD+AtgFbJnEUF1VjdtRtxB99z5ch/8fvhn3DbR1 tGUSCyEfWkQyKSsrQ2x0LO7dvoekhERwOBzBJ0nA2zdv8fbNW0RGRILFYsHRuR+cB/RHZxtrMBgM mcREtCwP7j/AOf+zeP/2vaxDAVD3Kizsciiirt2A1+iR8BjpAVU18vrrS6TQyeT9u/cIDrqMOzfv oLq6WtbhNFJYWIirYVdwNewK2rZrC49Rnvh66NfkPTMhktQXL+Hn64fUl6myDqVZ5WXlCDhzHlfD r2DchPEY5jZM1iERUqaQyeR1+mtcuvA3HkQ/EGvsQ1pyc3Jx8ugJXDj3F9w9hsNthBu0tLVkHRah IG5E3sDxw76ora0V6XxlZWW0bdsWhoaGTb6YTCZycnKQnZ2N7OzsRv8tyiwwdgEbvoeOISkhEfMW zYeKiopIMROKR6GSSU52DvyO++Fx3CNZhyKS4qJi/HU2AJeDLsFrtBdGjRkNpgpT1mERcorL5eLU yVMIuxwq9Ll6enpwd3eHp6cn3NzchJ4cUl1djXv37iEkJAShoaFITRXuiSj6bjRy3udg2ZrlpHjs F4IBoOHWfubcmRjm7irDcJpXXV2Ny4GX8ffFIFRXydfrLHG0M2yHabOmo6dDT1mHQsiZ8rJy7Nu9 D08exVM+x8jICN9//z08PT3h5OQEZWVlwSdR9PLlS4SGhiIgIABxcXGUz2vdujWWrVkOy86WtMVC yIdrEZHwPezb8Hu5TyZPnzzFiSPHkf0+W9ahSIxDHwdMmzWdTLEkANS9Ft2xeTveZL2h1F5HRwfL ly/HkiVLpLJq/fLly1i1ahWSk5MptWeqMDF34Tw4D3SWcGSENH2eTJQBbKj/Ta/evWBhZSGDsJri crm4eP4ijh44gpLiEon3x2AwoK+vD3Nzc1haWkJNTQ2VlZVSGdh/9/Ydbl2/CUMjI7Tv0F7i/RHy K/VlKjau2YC83DyBbZlMJubPn4/AwEC4ubmByZTOK1MbGxvMmTMHpqamiI+PR3Ex/zUunFoOYmNi weFwYdfNTioxEpKX/ioN8Z88OcvlmElVVRUO7T+I6LvRtF5XX18fbm5usLa25jkY+bmSkpKGAcn3 7983/PfDhw9x+/ZtVFVV0RJbWVkZ9uzwwf+NcMOU6VOk9oOBkB95uXnYsXk7pQWIHh4e2LdvHyws ZHPzp6ysjB9//BGTJk3C3r17sWHDBoE3XoEBF6Gry8L/jXCTUpSENMldMikoKMDOLTuRlvqKlut9 9dVX8PDwgIeHBxwdHYVeSKilpQVLS0tYWjZ951tSUoJr164hNDQU4eHhyM4W/1Xc1bArSH3xEkuW /4x2hu3Evh6hGCoqKrBzyw4UFRYJbLt69Wps2bJFLtYuqaurY/Xq1XBycsKYMWPw8eNHvu39jvvB uL0xvurejW87QvHI1ZjJ67R07NiyAx8/8P+G5EdFRQVDhgxpSCAdOkinOB2Xy8Xjx48RGhqK0NBQ PH78WKzraWlrYdW6VbCy7kxThIS84nK52L1tNx4+4D+wraKiAl9fX0yZMkWs/tLT03Hy5Ek8evQI ZWVl6N27N8aPH4++ffuKdd1Xr17Bw8MDL1684NtOU1MT3ru3wcjESKz+CNmS2wH42OgHOLD3ACor K0U6n8FgYNKkSdiyZQvMzMxojk54d+7cwcqVKxETEyPyNVRVVbF01S+w72lPY2SEvDnvfw5BfwXx bWNgYICgoCC4uLiI1Zevry+WLFmC0tLSRp8rKSlh6dKl2L59u1hlgNhsNsaNG4fr16/zbWdkYgTv XdugqaUpcl+EbMnlAHxgQCCOHzmOmpoakc4fNmwYLly4gHnz5kFXV5fm6ERjZmaGGTNmwN7eHs+e PUN+fr7Q16itrUX03Wi0M2wHs46yT5AE/e7fvQ8/3z/4trGyssKtW7dgby/eTcW1a9fw7bffNjvO x+VyER0dDV1dXfTr10/kPtTU1DBx4kTk5OTwfTovKS5B+qt0OA90JjXsFNTnA/Ay/b/I5XJxYO/v CDhzXqSV7N27d8fVq1cRGRmJHj16SCBC8Y0aNQoJCQk4fvw42rcXfqZWbW0tDuz9HVfDrkggOkKW Xqel4/D+Q3zb6OnpITw8XOyBdi6XixkzZgj8d7ZmzRrk5QmeScZPq1atcOTIEYwePZpvu4Snz3D6 5Cmx+iLkh0yTyV9nA3Dn5h2hz2vfvj1OnTqF+Ph4uLrK17qY5igrK2PGjBlITU3Fzp07oaOjI9T5 XC4XJ4+dxL3b9yQUISELx4+c4DsbsFWrVrh48WKzkz+ElZqaijdvBK9bKS8vF+vVbD0GgwF/f3+B N3kRoRH4982/YvdHyJ7Mkkn03WgEBgQKfZ6TkxPi4+MxefJkhXs8VlNTw7JlyxAbGyv0nSaXy8XB fQfw7J9nEoqOkKa4mDikvnjJt82BAwfw9ddf09JfYmKiRNryo6GhgZCQEBgZ8R5o53K5OPvnGVr6 I2RLJj+NX6el49D+g0KfN2HCBERFRaFNG8VeKW5jY4O4uDgMGjRIqPNqa2ux23sX0l6lSSYwQio4 HA7OnuL/A3ThwoWYPXs2bX2am5tLpK0gJiYmCA4Ohrq6Os82j+Ie4UUK/xlghPyTejIpZBdi59ad Qi/2W79+Pc6ePdtiSrjr6ekhMjISs2bNEuq8iooKbNvoTWmFNCGfoq5F4d3bdzyPDx06FHv37qW1 Tzs7O2hrC968isFgwNHRkda+HRwccPz4cb5tzvj509onIX1STSbV1dXY5b0TH/I/UD5HVVUV/v7+ 2LBhg+QCkxEmk4mjR49i3759QhXlKyoswr6de0UuSU7ITmVlJS6c/YvncSaTicOHD9NapBGoG3/x 8fER2G7hwoXo2LEjrX0DwMSJEzFgwACex1Oep+DxQ/HWZhGyJdVk4nvoGF6m8H9P/CkDAwPcuHED kyZNkmBUsrdo0SKEhoYKVSY89WUq/MndnMIJDw5DQUEBz+OzZ8+mZcC9OTNnzsTcuXN5Hh86dCi2 bdsmkb4BYNeuXXyPnzt1ViH2JyKaJ7VkEnopFLdu3KLcvl27dnjw4AH69+8vuaDkiJubG+7duyfU Opmwy6F4pKB7u3yJqqqqcDnwMs/j2traWLdunURjOHToEIKDgzFs2DC0adMG2tracHZ2xoEDBxAZ GSnRqsN9+vTB+PHjeR7PyszCk8dPJNY/IVlSSSZPnzyFv99pyu1VVVVx6dIlmRWxkxU7OzsEBAQI 9Yrj4L4DQr02JGQn8VkiysrKeB5fsWKFVCaXeHp6IjIyErm5uSgsLMTdu3cxf/58qdT68vb25lvE lLzqUlwSTyYVFRU48vthcDgcyuf4+vrSPgioKFxdXbFv3z7K7UtLSgWuoCbkA78dQo2NjbFkyRIp RlNH2sUiLSws+L5qE2YzMEK+SLxq8IVzF4S6c16xYgUmT54swYjk34IFC5CUlIQjR45Qah8bE4sn j5+gRy/5rAJA1OF3171w4UJaXzElJCRg//79uHHjhljjEPb29vjpp58wePBg2mKbN28efvvtt2aP 5efl403WG5h2MKWtP0I6JJpM3mS9QXhwGOX2Xl5e8Pb2lmBEiuP333/Hy5cvERUVRan9yaMnsOfA XrKnvJx6nZbOtxq2oNIjwqitrYW7uzvevn0r9rUyMzMRGhqKjIwMkcoBNcfa2hqWlpZ49ar5bSae PHpCkokCkuhrruOHj1OevvrVV1/hzJkzCreqXVLqS2lYWVlRap+TnYNLgX9LOCpCVI/ieD+VWFtb w9ramra+IiMjaUkk9Wpra3H6NPUxTypGjBjB81j8IzJuoogk9pM7LiYOyUnPKbVt06YNgoODoaWl JalwFFLr1q0REhJCeYZX8N/BArdQJWQjns8rrlGjRtHaV05ODq3Xk8Q1PTw8eB57kfyC70QFQj5J LJn8fYH//gyfOnbsmEQWSrUE1tbW2LhxI6W2lRWVuBIaIeGICGEVFRYhPS2d5/GRI0dKMRr5MGDA AJ4r8mtra5GclCzliAhxSSSZPPvnGeX6US4uLrTfmbU0c+bMoZxsI0IjUFFRIdmACKHk5ebyHARv 166d2DscKiIVFRW+Fb8/kunuCkciyUSYpxJBq2KJun94mzZtotS2pLgE16/w3+WOkC52AZvnMQcH hy92nLBr1648j7HZvP/OCPlE+3dx6ouXSEpIotR23LhxX+RdmSgmTZqEr776ilLb0MshQq3rISSL XzIxNDSUYiTypW3btjyPsdmFUoyEoAPtyeRG5A1K7ZhMpkTrALU0SkpKlP++Pn74SDmhE5LH7y6b 314fLV27du14HuOXgAn5RGsyqa6uRmx0LKW2c+fO/eLKpYhrxIgRcHFxodT2/h2yK6O8IE8mzeP3 ZFJIXnMpHFqTSfyjeJSWlgpsx2KxJF7QrqXavn07pXaxMbGoqamRcDQEFSSZNI/vay7yZKJwaF0B f+/WXUrtlixZAn19fTq7BgA8f/4cmZmZyMvLw4cPH6CtrQ0TExOYmJjA2NgYBgYGtPcJANnZ2UhK SkJ+fj7y8/PB4XBgbGzc0K+RkRHf4nbCcHJyQv/+/XH//n2+7UpLSvE0/h/06uNAS7+E6Pj9YCSv uZpXSMZMFA5tyaSiogLxFIu08StDLax79+7B398f4eHhePPmDd+2xsbGmDx5MqZOnQobGxux+s3M zMSJEycQFhaGJ0+e8K1/pKKiAi8vL0ydOhVubm5ib3zk6ekpMJkAQNyDOJJM5EBFZSXPY5qamlKM RL7w+7NXVVWBy+VKvRAlITraXnO9eJ6C6upqge0sLS3RpUsXsfv7559/MHz4cLi4uODo0aMCEwkA vHv3Djt27ECXLl3g6OiIGzeoTRb4VF5eHhYvXgxra2ts3rwZ8fHxAgvpVVVV4eLFi/Dw8ICpqSm8 vb3F2iWRXymKTz1PpFaBgJAsFkuH57Hc3FwpRiJf8vJ4bz2tpaVFEomCoS2ZJCVSmz3k5eUldl+7 du1Cr169EBEh+mrv2NhYuLq6YtOmTZSn0d69exe2trbYv38/KvncbfLz/v17rFmzBsOGDRO5RIWd nR3MzMwEtsvJzuG7qx8hHSw+5XCys7OlGIl84ZdIdXR5J2BCPtGWTKjeBYuTTCorK/HDDz9g+fLl tKyj4HA4WL9+Pdzd3fHxI++KrgDg5+eHoUOHIj8/X+x+AeDmzZuwt7fH3bvUxpk+R/XpJIWUpZA5 3da8k8n79++lGIl84XczJcyOo4R8oCWZVFZUIi1VcPkUPT09ODs7i9zP9OnTcerUKZHP5yUyMhKT Jk3i+brq4sWLmDZtGqqqqmjtNzs7G56ensjIyBD6XMqvukgykTl+yYQ8mTRPh8WSYiQEHWhJJulp aZTGAEaMGCHy4PPOnTtx9uxZkc6l4sqVK9i7d2+TzxMTEzF16lSJ9VtYWIiJEycKPY138ODBUFdX F9guI+21qKERNOF3l02SSfN0dUkyUTS0zOb6kM//FVE9UV9xPXz4EKtWraLUlsFgoFOnTujevTu6 deuGyspKJCcnIywsTOAP7FWrVmHgwIHo1asXgLrqpePGjaO0dgaoK6Vf3y+LxUJaWhpCQkIEjlvE xMRg/fr12Lp1K6V+AEBNTQ1DhgxBaGgo33akxpHs8XsyyczMpL0/W1tbLFq0qNFnhw8fFurJetq0 adDR+W/cYuDAgbTFV4/fKz7yZKJ4aEkmVFerDh06VKTrb968mdIYSdu2bXHhwgUMGDCgybH09HTM nj0b16/zLoLo5OTU6FVXQEAAUlJSBPbLZDKxd+9ezJ8/v8kxNpuNNWvW4NChQzzPNzU1pTSg3ly8 gpIJma8ve/ySSVxcHNhsNq1jBH369EGfPn0afebn5ydUMlm3bp3Et4XgN17IIk8mCoeW11xUVqtq amqK9A/m6dOnCAkJEdiuW7duePz4cbOJBADMzc0REhLSbNnrfv364fr167h58yYcHOrWZXC5XEpb COvr6+PWrVvNJhKg7hXHwYMHsXz58ibH2rdvj0OHDuHVq1eYNWuWwL4+R2X1dEVFhcgzzwh6GBkb 8XwlWVNTg/DwcClHJHs5OTl49OgRz+OmHejZIpiQHnqSCYUnE1FX+h4/fpxSOx8fH4F7VKupqeHM mTNo3bo1AKBXr14ICwtDdHQ0hgwZ0qhtTEwMkpIET3f++eef4eTkJLDdtm3bGhJV+/btcfDgQaSl pWHu3LlQUVEReH5z+K0g/lRRYZFI1yfo0apVK3Tv2Z3n8eDgYClGIx/Cw8N5TnjR0taClXVnKUdE iIuW11xUnkxErUHE77VUPTs7O8qv0AwMDHDkyBEwmUyMHj2aZ7ubN28KvJaGhgbmzJlDqV8lJSUc OHAAjx49wo8//ghVVVVK5/FDNZmw2Wy0adtG7P4I0fXq7YAH9x80eywiIgLV1dW0ldxRBGFhYTyP de9h/8Xu8aLIpJZMRHkyefv2LaUxi3nz5gl1XSrlXKKiogS2+f7776Gnp0e53759+9K6fwvVZELG TWSvZ++eUFJSanbsr6ioCLdu3cKwYcNkEJn0VVdXIzIykufxng49pBgNQRepjZmI8mQSG0utnL29 vb3Q1xbk4cOHAtv06CHbb3p+VVc/RZKJ7Glra6OzDe9XN/7+/lKMRrauX7+O4uLiZo8xGAzY9yTJ RBGJnUw4HA6KigS/kxflyYRq3SITExOhr81PVVUVz2/2T3Xo0IHWfoWloqLSMP7DD0km8sGhT2+e x/z9/ZGYmCjFaGRnw4YNPI9ZdraCto629IIhaCN2MikqLBJY6BAQ7cmEXyG4ekpKSrSX8RZUWqWe qakprf2KgsqrLrLRkHzo1acXz2McDgcrVqyQYjSycfHiRcTFxfE83tOhpxSjIegkdjKh+oNKlGTy 4cMHgW0MDAxoH7ikWhxR0OwxaaCUTArJk4k8MGlvAhtb3lsfhIeHU5r4oahqamqwevVqnseVlJTg 5Cx4ZiQhn8ROJkyK01pFqWtFZcpsWVmZ0Nelo18AKCkpob1vYVH5e2UyRZt6TNBv8rTJfI8vW7aM 0pO+IvL19UVqairP4wMHD4KRyZe7WZiiEzuZ8Fvd+ylRahBR2RmxpKSE9jtvKuMQACjtoSJpVMaV dPjsp0FIl5V1Z/R1cuR5/PHjxzhz5owUI5KOkpISbNy4kedxpgoT4yfSt2keIX1iJxMNDQ0wVQS/ ZhJl7w6q2+y+fftW6Gvzo6urS2ljnqysLFr7FQWVZMIidY7kysQpE/kWPJ03b16LGozncDiYMmUK 358BbsPdoG9A/1behPTQMjWYSpkUUZ5MqM7SovsJQUlJidJYhKyTSXl5OaVZZyyy0ZBcMTI2wtD/ 473Itri4GJ6enpQmoCiClStX4u+//+Z5XENDA6PG8V5ATCgGuU4mjo6OlFbCBgUFCX3tmJgYvsUj XVxcBF7j4sWLQvf75MkT2sZ5qE6dJhVY5c/YCeOgpqbG83hGRgZGjx5N+x460ubr64tdu3bxbeP1 zUhoa5PpwIqOnmRCYdxElGTCYrHQvTvvmkb1Tp8+TXk6LwA8e/YMLi4u6NatG8+6SF9//bXA6zx8 +FConRJLS0sxfPhwmJub47fffhO7ACPVZEJec8kfFouFUWP5343fv38fM2fOlFJE9Lt+/brA6hSt W7fGCC9qG70R8k1qyUTU/c4/L8DYnPLychw8eJDS9aqqqjB//nzU1tYiKSkJI0eOhJOTE+7cudOo HdXSFjt27KDUDgA2btyI7Oxs5OTkYNGiRbCyssLx48eF3hirHuVkQsp5y6XR40ajh4B1FadOncKW LVukFBF94uPjMXbsWL7f20wmEz+v/BmqauLXqSNkT66fTABg/vz5aNVKcAmx9evXY9OmTXynVZaX l8PLywv37t1r9HlMTAwGDhyI4cOH4+nTpwAAS0tLuLu7C+w3LCwMY8eOFThNePPmzU0e99+8eYOZ M2eiS5cuOHPmjNBTQqm/5iJjJvKIwWBg8bLFMDXjX0nh119/xYIFC0S+6ZC2wMBAuLi4CJxlOWv+ bFh34b3uhlAsUhszKSsrE2nWVceOHTFp0iSB7bhcLtavXw8vLy8EBgbi9eu67Wo5HA4yMzPh4+MD KysrXL16lec1IiIiGtUDo7q7Y2BgIPr06YM//vgDT58+RXV1NYC6RZeXLl1Cv379sG7dOp7nv3r1 Cn5+fpT6+hSViQfqGupfVDVaRaOuro6Vv64UmPAPHjyI4cOHy/3OmVu2bMG4ceMEjguOHjsaAwfT v3sjITu0VA1mUdz0KjQ0FLNnzxb6+r/++isCAwMpLRIMDQ1t2H2QxWKhsrISFRUVlPr55ptvGm1S 5eLiAnd3d0RERAg8Nzk5GdOnTwdQt+hRU1OT8kr6tm3b4vTp05SmI3+KSnl+Ml4i/9q0bYNlq5dh 09pNDTcizbl27RocHR0REhICKysrofrYtm2bUGN0wlTDBuo2YZs+fTrOnTsnsG2ffn3w3eQJQl2f kH+0JBNDY2qlUi5fvixSMrGwsICfnx/Gjh0r1HnCLGZs3749fH19m3x++vRpODg4ICMjg/K1qqqq KM/CYTAY8PPzE7rcTEFBAaKjowW206e4VoeQLesuNpg1fzYO7jvAt92LFy/Qt29fBAQECFWyfu7c ueKGyFNWVhbGjRvHt+ZWvU7mnbBwyU9C3zgR8o+W11ymHUwpTe2LiooSuQTJmDFjKL92Epa2tjbO nTvX7N2Yvr4+goKCoKmpKZG+161bR2ls5nNXr15FbW2twHbWXciOdYpi4OCBGPPtGIHtCgoK4Orq ijFjxuDly5dSiKx5bDYbK1asgLW1NaVE0qZtGyxfu4IMuLdQtCQTBoOBLnZdBLarrKzkO2YhiLe3 N3bv3k3rLmyWlpZ48OABnJ2debbp0aMH7t27R2uVYFVVVfzxxx98y3Hzw2+nuk91sRX8/4WQH99O +g7TZk2nvL6qa9eumDt3rsgTXERRWVkJHx8fWFhYYOfOnZReI9vY2mCbz3ayyr0Fo+2nsq1dV0rt xN3veunSpQgNDRV5G+BPubq6Ii4uDra2tgLb2tvbIy4uDoMGDRK7X0NDQ9y8eRNTp04V6XwOh4Mr V64IbKekpITOXaxF6oOQHXcPd6xatwoaGhoC29bU1ODIkSOwtLTE+vXrJZpUSkpK8Mcff6Bz5874 5ZdfKK/t+nroYKzbsp7MKmzhaEsmXe0E/0AG6u6oqbye4cfd3R3p6enw8fGhvNtgPQaDgaFDhyIw MBDh4eGUizoC/yWByMhIODryLtbHi7m5OXbs2IHExET069dP6PPrxcbGIj8/X2C7TuadoK6uLnI/ hOx072mPrbu80c6Q2tbMpaWl2LRpE4yNjdG3b19s3boVCQkJYsfx/v17HD16FMOHD4eBgQGmT59O uYyQkpISfpjxA+b+NJfS9H5CsTEANCxumDl3Joa5u4p0IS6Xi3kz5uJDvuA9SG7fvo0BAwaI1M/n Kisrcf/+fVy7dg03btxARkYGPn782JCwtLS0YGpqig4dOsDe3h4zZswQeiYML8+fP8f169dx7do1 PH36FHl5eQ2P/K1atYKJiQk6dOgAc3NzTJgwAa6urrQMPK5duxZbt24V2G7kmFGY9IPgadWE/Cou LsZu791ITnou0vkdO3aEh4cHunbtCiMjIxgaGjZ8qarWjV3U1tYiLy8P2dnZDV8ZGRmIiIjAw4cP RSqJr6GhgcXLl8C+J/1bahPy4VpEJHwP/zdpibZkAgD+fqcRHCT4NdbEiRMlWmabw+Hg48ePUFZW FurJgw7FxcUoLS1F27ZtaR3bqcfhcNC1a1ekpKQIbLtj7w50sjCnPQZCumpqanDi6AncuCp4Krgw dHV1oaKigvz8fL516oRl2sEUP69cCpP29G6nTciXz5MJrT/tXAZRe9o4x7guwAAAEJ1JREFUd+4c 4uPj6ey6ESUlJRgYGEg9kQB1M8MMDQ0lkkiAuvIaVBKJkYkRSSQtRKtWrTB7/mx4796GLl2pvU6m gs1mIzc3l7ZEoqevhzkL52LXb7tJIvkC0foTz6yjmcDSEEDdK7Hly5fT2fUXoaKigu9K+k/1d+kv 4WgIabPsbImN2zZixa8r0d5U9ltG19PU1MSkHybht6O/Y/CwwRK7kSLkG+3/1wcMEly6HQBu3LhB aUYS8Z/ffvuN8t4t/V14T3UmFFuv3r2w+3cfzFk4F631pP/0XY+pwoTXN1444HsQI8eMorzdNdEy 0T7FYrDrEAQGBFKae758+XK4urqSOxkKPn78iG3btlFqa2NrAxNT8pqhJVNSUsLgYYPRf0B/3I66 jYexD5H0LFHixSAZDAYsrSzRq48DBg4eSNaNEA1oTyba2toY5u6KkL8FD8QnJCTgzz//xLRp0+gO o8XZunUr5SJ/owXsk0G0HKqqqnB1d4WruyvKy8vx7MlTPIp7hPhH8SguErwLJ9U+utl3Q68+DujV uxfZ0oBolkQmf3uO8sSVsAhUV/EuWldv3bp1+O6778h6CD4yMzMp79di1qmjwD0yiJZJXV0dfZ0c 0dfJEVwuFy+SXyDhaQI+fvgAdgG77otd9+vna72UlZWhw9KBrq4udFvrgqXLQuvWrWFjawO7bl+B qUIqTxP8SSSZ6LbWxeBhQ3A1TPCYyL///ouNGzdi+/btkgilRfjll18oV3wdNXaUhKMhFAGDwYCN rQ1sbJvuF8LlclFSUgJ2ARvgcsHS1YW2jjYpvkiIRWKDFaPGjGpYFCXIjh07cPbsWUmFotC8vb0p 7zVvZGKEfv1FX1lPfBkYDAa0tbVh2sEUpmYdoMPSIYmEEJvEkom+gT7Gfke9ZPz06dMRExMjqXAU 0sWLF7F27VrK7afNpFYgkCAIgm4S/cnjMcqT8nz4yspKjBo1CpmZmZIMSWE8fPgQU6ZMoVzKordj H1K6giAImZFoMlFWVsaPc2dSbp+bmwtPT08UF9MzC0VRZWVlwcvLC+Xl5ZTaq6ioYOqPUyUbFEEQ BB8Sfydia2eLQUMGUW6fkJCAiRMn0lorSJEUFxfD09NTqFLio8d9gzZt20gwKoIgCP6k8oJ9xpwf 0cm8E+X2oaGhWLZsmQQjkk+1tbWYMGECnj17RvkcaxtrMoOLIAiZk0oyUVVVxfK1K4QqvLhnzx4s Xbr0i3lCKSwshIeHB+UdFIG6BaKLly+BsrKyBCMjCIIQTGpTf/QN9LFszXKhFj/t2bMHXl5eLX4M 5dWrV3B0dBSqVhmDwcCCJQtIOQuCIOSCVOeRWna2xLxF84U6JywsDE5OTsjIyJBMUDIWFRWFvn37 Uior/6mRY0aSle4EQciNRptjaWlriVTWZPaCOehm341y+4AzAQgMoLYQr16bNm0QFBQEZ+eWUw33 8OHD+Omnn4Quztevfz8sXr6E0kIzDoeDbRu98e7tO1HDJAiCaKK8vBwlxSUNv2+UTETVtl1b+BzY Q3nFO5fLxd6de/Dg/gOh+lFRUcGxY8fwww8/iBKm3KipqcGiRYtw6NAhoc/9qns3rFq/ivKe2qGX QnHq5J9C90MQBCEMZQAbxL1IaWkpqqur0L0HtUVzDAYDPXv3wtMn/6DgYwHlfmpra3Hp0iUUFxfD 2dlZIfdPSE9Px/jx4/HXX38Jfa6FlSVWb1hN+c+dk52DvTv2NCnqRxAEQTfaxkzCg8OR9iqNcntV VVUsX7MCevp6Qve1Z88eWFlZ4fjx4wrzg/LDhw9YvHgxunTpgqioKKHPN+1gitXrV0NNTY3yOccO HqVcIJIgCEIctCUTDoeDI78fEeqHu56+Hrbs3AqzTh2F7u/9+/eYOXMmunfvLtR0WmkrLy/H9u3b YWFhgf3796Oqqkroa/Rw6IktO7dCW0eb8jk3r99EwtMEofsiCIIQBS2vueoVstlQVVVttuw1Lxqa Ghj49UD8m/VGpEHivLw8nD17Fnfu3IGdnR2MjY2FvoYkcDgc/Pnnn/jmm2/w999/i/yE4DnaC/MW zRNqSjW7gI2dW3dQ2k+GIAiCDrQmEwBISU5Bv/79hLqLbtWqFZxcnFBTU42U58JNka2XkZEBX19f vHz5Eu3atYOJiYlMKugWFBQgKCgIkydPxrFjx1BUVCTSdZhMJub+NA9e33gJXR784L4DeJ3+WqR+ CYIgREHLbK7PGZsYY+sub2hqaQp97p2bd3D0wBFUV4t3V62vr4/hw4fDw8MDbm5u0NHREet6/KSl pSE4OBghISG4e/eu2Ptw67bWxbLVy2Bl3Vnocy9dvISzp86I1T9BEISwJJJMAMCumx3WbFwrUqmP FykvsHvrLhQWFtISC5PJxIABA+Dp6QkPDw9YWFiIdb3a2lrExsYiODgYwcHBSE5OpiVOADC3NBd5 YkJsTCz2bPehXLaeIAiCLhJLJgAwxHUIZi+YI9K5ebl52LllBzIz6N/fRE1NDYaGhjA0NISRkVGT X3V0dJCbm4vs7Gy8f/++ya95eXkSmUXW36U/5i6aJ9KU59dp6Vi3ch2ZvUUQhExINJkAwPdTJ8Pr Gy+Rzq2oqMDh3w4j5l40zVHJF6YKE99O/E7kv6eCjwVY+fMKodbsEIpLQ0OD0g1H/V7vgm58dHV1 m3xWVlZGaeahsrIytLWbjo8WFxcrzLR9gh4STyYMBgO/rPoFvR37iHyN+EfxOHn0BHJzcmmMTD70 dOiJabOmo51hO5HOr6ysxLqV6/A6LZ3myAh55efnR7kKBIfDQW5uLt69e4dLly7hxIkTePeu8azJ q1evwtXVtdFnUVFRGDJkiMDr7969G0uXLm30WUZGBmxtbSlv7ka0DBJPJgCgqqaKDVs3wMLKUuRr VFVVIeivQAQHBYs9wC0P2rRtg6kzp6F3394iX6O2thZ7d+5BXEwcjZER8k6YZPK5mpoaTJkyBefO nWv4rHPnzkhISGjytDN+/HhcuHCB57VsbGzw7NkzMJmNp62PHDkSwcHBIsVHKC6pzJ2trKjEprWb kJSQKPI1VFRU8N33E+Dz+x44D3SWybRfOrB0Wfh+6mTsObhXrERSVVWF3d67SCIhhNKqVSucPHkS vXv/97338uVL7N69u0lbHx8faGrynpG5f//+JokkLCyMJJIvFO3rTHipqalB9N1otDc1QXvT9iJf R1tHG32dHNF/gDMqKyrwJvONQsxe0jfQx3ffT8CCJQtha2dLuVBjc0pLSuG9fisSnpEV7l+iUaNG wd6+cR28hIQEpKSkIDMzs+Hrw4cP0NbWblKAtf57LyQkpOGzBw8eYPLkyWCxWA2fsVgsMBgM3Lhx o0kMI0eOxJo1axp9VlFRAU9PTxQUkLG7L5FUXnM16pDBwI9zZ2KY2zBarpeXm4eI0HDcu30P7AI2 LdekC4PBgI1tFwwaMggug1zESiD1PuR/gPeGrXiT9YaGCAlF1NxrLnd392Y3V1NXV8fWrVuxZMmS Rp8/efIEPXs23g9n9OjRCAoKavRZVVUV7OzskJqa2vCZqqoqnj9/DnNz80ZtN27ciA0bNojyRyJa AKknk3rfTvoWY74dS9v1OBwOEp8l4u6tO4iNjkVFRQVt1xaWWaeOcB7oDOcBzrTuhPj237fYun4L 8vPyabsmoXiESSb18vPzoa//3/cim81udhvtiIgIuLm5Nfls+PDhDb9fu3YtNm/e3KhNeno6unbt KtN/d4RsiX+rLKKAMwEoZBdi2qzpQpcLaY6SkhK62XdDN/tu+HHuTDxPSEJSYhKSEp7jdVq6RPeS 19PXg62dLWztuqLrV11hZGxEex+pL15i+6btLX4LY0IysrKyGiWT+/fvN9tu4cKFSExMbPRqzN3d HV5eXggODoapqSlWrVrV5LyffvqJJJIvnMySCQBcCbuCrMwszF+8AG3atqHtuqqqqujh0LNhW9vy 8nKkPE/B+3fvwS4oALuAXffFrvu1qLCIUrJRV1eHobERjIwNYWRsBGMTY3S2sRZ5Wi8VXC4XoZdC cN7/vNglZogvk4GBAWxsGhdfvXr1arNtX716hV27dmHt2rWNPt+3bx8iIyOxa9cuaGhoNDoWHBws 15W7CemQ2WuuT6lrqGP6rBkYOHigTPrncrkoKixqSDQVFRVQVVODWv2Xuho0NTWFKl5Jh7zcPBzc dwDPE59LtV9CvjX3mmvs2LFNBsoNDAzg5uaGGTNmNBqwj4+Ph5ubG/Ly8pq9vrq6OpKTk2FmZtbo 85CQEHh6ejb6rLy8HLa2tsjIyBDjT0S0BHKRTOr17dcXsxbMbnZF7ZfmdtQtnDx2EuVlZOEX0Zg4 60zOnz+P6dOnC1xQOHLkSFy6dEng9X799Vds2bJFpFiIlkWuFmvExsRi6YKf8eRRvKxDkZniomL4 bNuNg/sOkkRC0E5ZWRm2trYC212+fBnh4eF826SmpmLXrl10hUYoOLl6MvnU10MH49tJ34pUPVcR cblc3Ll5B2f+9Je7Kc6EfBHnyQSom/k4bdo0nDp1im87CwsLJCUlNVmnUs/NzY3n2Avx5ZHbZALU FUB0df8/jBo7qtFiqpaEy+UiNjoWAWfP4+2bt7IOh1AAzSWTFStWIC6ucTUEJpMJZ2dnjBgxAj17 9mw0a5LD4aB3796Ij+f/FmDjxo1Yt25dk8+DgoIwZswYMf4UREsj18mknqqaKoZ7joDXaC+RNtyS V/GP4hHgf57sikgIRZR1JkuWLMGePXsafXbx4kWMGzeOb1/q6urIyclpMo5pZmaGrKwsISMnWjKF SCb1NDU14THKEyNGjoCampqswxFZ4rNEnPc/h5cpL2UdCqGAREkmTCYTpaWljWppZWdnw8hI8Jqo 7OxstGvXePo7HWvDiJZFputMhFVaWoqAM+cR8ncwHPs7wmXQANja2SrEN3bBxwLcu30Xd2/fRUZ6 hqzDIb4w1dXVyM3NhYmJScNnhoaGUFFRobRvCUEIolDJpF5ZWRmirkUh6loU9A304TzAGS5fD0AH sw6yDq2R8rJyxMbE4u6tO0h8lqgQBSmJlklXVxfGxsaNPnvz5g1JJARtFDKZfOpD/gdcDrqMy0GX YdbRDC6DBsC+lz3am7aXSZn6wsJCvHj+Avfv3sfjuEfkHyshcywWC35+fk2e4GNiYmQUEdESKXwy +VRmRiYy/U7D3+80VNVUYW5hDgsrC1haWcHCyoL2sifl5eVIf5WOtNQ0vEpNRVpqGvJym19VTBCS tHTpUnz33XeNPlNWVoaRkRH69evXpAQKAERGRkorPOIL0KKSyacqKyqRnJSM5KTkhs+0tbVhYWWB tu3aQktbC5paWtDS0oSW1v/+W1sLmpqadYOVJaUoKS1BSXEJSktKUVpSgpKSEpSUlKKosBCv017j 7b9vyasrQi4MHTpUqPb+/v44ceKEhKIhvkQtNpk0p7i4GP/E/yPrMAhCZrhcLgICAjBjxgxZh0K0 MF9UMiGIL1F1dTWysrJw8+ZN+Pj4ICUlRdYhES2QQq0zIQgCMDIyolwRorS0FG/fvhVrPx9LS8sm u4SShER8jiQTgiAIQmxyVTWYIAiCUEwkmRAEQRBiI8mEIAiCEBtJJgRBEITYSDIhCIIgxKYE4L2s gyAIgiAU2ntl1CUTRwA6Mg6GIAiCUDxvASz7fxUFi+g9mezeAAAAAElFTkSuQmCC ------=_NextPart_01DC5365.5C75D260 Content-Location: file:///C:/32CB10EF/file8943_arquivos/filelist.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml; charset="utf-8" ------=_NextPart_01DC5365.5C75D260--