MIME-Version: 1.0 Content-Type: multipart/related; boundary="----=_NextPart_01DC5369.B776F410" Este documento é uma Página da Web de Arquivo Único, também conhecido como Arquivo Web. Se você estiver lendo essa mensagem, o seu navegador ou editor não oferece suporte ao Arquivo Web. Baixe um navegador que ofereça suporte ao Arquivo Web. ------=_NextPart_01DC5369.B776F410 Content-Location: file:///C:/A4623221/file8785.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="windows-1252"

 

AS MÚLTIPLAS INJUSTIÇAS EPISTÊMICAS= NO CASO DA MAMADEIRA DE COCAÍNA

The multiple epistemic injustices in the case of the cocaine bottle

 

Michael Guedes= = *  <= /span> <= /a> 

 =

 =

Resumo: Em 2007, na obra Epistemic Injustice: Power a= nd the Ethics of Knowing, Miranda Fricker cunhou a expressão “injustiça epistêmica” para caracterizar os diferentes contextos em que um indivíduo é singularmente injustiçado com respeito à sua condição de ente cognoscente. O presente artigo explora as diferentes facetas pelas quais tal injustiça epistêmica pode se manifestar a partir da análise de um caso criminal de pr= isão errônea de uma inocente — o de Daniele Toledo do Prado — no qual se vislumb= ra que todas essas facetas se mostraram presentes. A metodologia empregada no texto é a de revisão bibliográfica de escritos sobre epistemologia social aplicada ao Direito.

 

Palavras-chave: Injustiça epistêmica; c= ontexto criminal; análise de caso.=

 

Abstract: <= /span>In 2007, in her work Epistemic Injustice: Power and the Ethics of Knowing, Miranda Fricker coined the term “epistemic injustice” to characterize the different contexts in wh= ich an individual is singularly wronged with respect to his or her condition as= a knowing being. This article explores the different facets through which such epistemic injustice can manifest itself based on the analysis of a criminal case of wrongful imprisonment of an innocent person — that of Daniele Toled= o do Prado — in which it is clear that all these facets were present. The methodology used in the text is a bibliographic review of writings on social epistemology applied to Law.

 

Keywords: = Epistemic injustice; cri= minal context; case analysis.

 

INTRODUÇÃO

 

“Monstro da mamadeira” é a forma como Daniele Toledo do Prado passou a ser chamada no ano de 2006, após ser acusada de provocar uma overd= ose em sua própria bebê, Victória Maria do Prado Iori, supostamente a fazendo ingerir cocaína através de sua mamadeira. A culpa de Daniele foi tida por comprovada com base em um exame preliminar de drogas, realizado no pó branco encontrado na mamadeira e boca de Victória, cujo resultado teria sido posit= ivo para cocaína. Entretanto, o “positivo para cocaína” era um falso positivo, = que resultou na indevida prisão de Daniele por 37 dias.[1]

O blue test utilizado= no episódio em questão dá positivo diante de qualquer substância cuja terminaç= ão é -ina. Assim, provavelmente, sinalizou positivo para o pó branco encontrado = na boca e mamadeira de Victória em resposta ao remédio que Daniele ministrava à sua filha, conforme prescrição médica, em virtude da doença que lhe acometi= a.

A inocência de Daniele foi provada apenas com base nos exames de drogas definitivos posteriormente realizados, que revelaram a ausência de cocaína nas vísceras, urina e sangue de Victória — o que resultou na conces= são de um habeas corpus a Daniele. Todavia, era tarde demais. Em meio ao= s 37 dias em que ficou na prisão, em uma das noites, Daniele foi gravemente feri= da pelas demais presas, que ouviram na televisão do presídio sobre o crime supostamente cometido.

Maxilar, clavícula e escápula fraturadas, traumatismo craniano e rompimento do nervo ótico e do ouvido foram as consequências imediatas de passar pelas agressões de 19 presas, ao mesmo tempo. O rompimento do nervo = do ouvido é especialmente representativo do quão graves foram as violações, po= is é resultado de terem inserido uma caneta em seu ouvido, utilizando a sola de = um chinelo como martelo. Anos após as agressões, Daniele, em seu livro de 2016, ainda narrava que até aquele momento tinha a mobilidade prejudicada no lado direito do corpo e lhe faltava força na mão em virtude das fraturas na escá= pula e na clavícula, sofridas em seu tempo na prisão.

A história de Daniele é cert= amente apropriada para que se discuta sobre as muitas injustiças que podem se concretizar em um sistema falho como o nosso. O objetivo do presente texto é explorar, a partir do referido caso, o que se identifica como um tipo de injustiça distintamente epistêmica — a injustiça epistêmica. Esse fenômeno foi originalmente captado por Miranda Fricker, em seu livro Epi= stemic Injustice: Power and the ethics of knowing, de 2007 (cuja tradução para= o português da qual se faz uso no decorrer do texto foi recentemente publicad= a no Brasil, no ano de 2023).

Segundo Fricker, uma injustiça epistêmica ocorre quando um mal é feito a alguém especificamente com respeito à sua capacidade de conhecedor.= A injustiça epistêmica testemunhal ocorre quando o efeito de um preconceito faz com que ocorra deflação de credibilidade à palavra de um falante. Já a injustiça epistêmica hermenêutica se dá em um momento anterior, no qual, em virtude da ausência de recursos interpretativos, um indivíduo sofre desvantagem injusta por não conseguir dar sentido a suas experiências sociais (Fricker, 2023, pp. 17-18).

Através da abordagem de aspectos diversos da história de Daniel= e, o artigo discutirá as distintas formas em que pode se dar uma injustiça epistêmica, utilizando o episódio em questão como o caso norteador. =

No item 1 do artigo, primeiro, explora-se com maior aprofundame= nto teórico o que configura, exatamente, essa injustiça distintamente epistêmic= a de Fricker. Em seguida, explica-se o que é a injustiça testemunhal, bem como se argumenta como o caso de Daniele reflete um episódio em que essa injustiça = se fez presente em diversos momentos. 

No item 2 do artigo, há contestação à percepção originalmente característica do pensamento de Fricker, segundo a qual, centralmente, apen= as seria possível falar em injustiça testemunhal quando se concede um déficit<= i> de credibilidade (não excesso). Os complementos de José Medina e Jennifer Lack= ey ao trabalho de Fricker serão expostos nesse momento para sustentar a tese de acordo com a qual é possível falar de injustiça testemunhal por excesso de credibilidade. Posteriormente, assinala-se como o caso de Daniele também é = útil à discussão dessa forma de injustiça epistêmica, pois envolve uma injustiça decorrente de excesso de confiança em uma prova pericial de baixa fiabilida= de epistêmica.

Por fim, o item 3 apresenta maiores considerações a respeito da chamada injustiça epistêmica hermenêutica. Argumenta-se, nesse momento, que também é possível vislumbrar a configuração desse tipo de injustiça no caso= de Daniele quando se consideram os diversos trechos de seu livro em que demons= tra dificuldade em identificar/acionar mecanismos adequados ao objetivo de dar sentido à experiência de extrema injustiça da qual foi vítima.

 

1 A MANIFESTA INJUSTIÇA TESTEMUNHAL=

 

Um déficit de credibilidade ao testemunho[2] de um falante pode oco= rrer por muitos fatores, mas quando ocorre por força de um preconceito identitár= io[3], e tem por consequência fazer com que um ouvinte desrespeite o falante enquanto ente cognoscente, e= ntão há uma injustiça testemunhal (Fricker, 2023, p. 42). Essa injustiça ocorre quando, por exemplo, uma mulher tem seu testemunho descredibilizado em investigações criminais envolvendo casos de estupro, ou seja, quando se desmerece sua narrativa apenas por ser mulher.[4]

Mas injustiças testemunhais podem refletir muitos preconceitos conjugados a uma só vez. O caso de Daniele é oportuno para a visualização disso. Daniele não somente era mulher como era pobre e havia utilizado drog= as em seu passado. Em uma consulta do pré-natal de Victória, Daniele, inclusiv= e, confessou que já tinha feito uso de maconha e cocaína — informação que ficou nos registros médicos, em que pesem os mais de dois anos em que se encontra= va “limpa”.

Portanto, os preconceitos envolvidos no caso em questão ultrapa= ssam a esfera da irracionalidade costumeiramente atrelada à mulher. Há de se observar também o preconceito contra as pessoas de baixa renda, segundo o q= ual todas são criminosas, e o preconceito contra ex-usuários de drogas, cujo estigma é tamanho a ponto de o preconceito os perseguir pelo resto de suas vidas. Como disse o próprio delegado do caso: “Aquela mulher tem histórico = de uso de entorpecente na adolescência. Ela é um monstro” (Toledo, 2016, p. 7)= .

Há de se notar, então, um “v= eneno ético” (Fricker, 2023, p. 43) claramente culpável, que teve por efeito obscurecer todas as evidências que mostravam que Daniele não era o perfil de mãe que faria isso com sua filha. Daniele, na realidade, era uma mãe atenci= osa e preocupada que passava dias e noites em hospitais, correndo de um canto a outro, para garantir a sobrevivência de sua filha doente.

Inclusive, a própria suspeita de que Daniele estaria embriagada= no dia da morte de Victória também foi uma das muitas alegações que se provaram falsas. Todos os exames feitos em Daniele no dia da morte de sua filha deram negativo para álcool e drogas, de acordo com laudo do Instituto de Criminalística de São Paulo.[5]

A consequência dos preconceitos foi o desrespeito a Daniele em todas as instâncias possíveis até saírem os exames definitivos, que comprov= aram não só que ela não foi a responsável pela morte de sua filha como também que não estava embriagada no dia do ocorrido. Mas a deflação de crédito com respeito à narrativa de sua possível inocência foi tamanha a ponto de diver= sas informações importantes do caso serem ignoradas nos momentos preliminares a= pós a morte de Victória.

A repórter Cristina Cristiano — que investigou o caso de Daniel= e — pode ser considerada uma das únicas que ultrapassou os efeitos de preconcei= tos e tratou o caso com o devido cuidado, em que pese a matéria que havia feito, preliminarmente, descrevendo Daniele como um “monstro”, antes de buscar sab= er mais sobre o crime.

Cristina se preocupou em saber com o delegado do caso se Daniele havia confessado e qual era sua versão dos fatos. Além disso, conversou com= os pais de Daniele, visitou sua casa e conversou com um delegado do Departamen= to Estadual de Narcóticos (que revelou que a pessoa que sofre overdose de coca= ína fica com os sintomas opostos aos que Victória apresentava no momento de seu falecimento). Por fim, conversou com uma professora da Faculdade de Farmáci= a da USP, que apontou que o blue test poderia dar falso positivo para cocaína, visto que pode reagir com substâncias outras além dela.

Mesmo com todas essas informações, apontando a necessidade de um olhar mais cauteloso com respeito ao tema, Cristina foi ignorada pelo diret= or do hospital em que Victória morreu (que fez menção expressa ao problemático passado de Daniele) e, também, pelo promotor do caso, que pouco se preocupou com as chances de estar processando uma inocente, optando por seguir com a acusação. 

Nesse caminhar, a narrativa = de inocência de Daniele foi descredibilizada por delegados, colegas de cela, médicos do hospital e promotoria. Pode-se mensurar ocorrência de injustiça testemunhal até mesmo por parte da própria advogada de Daniele, que, de for= ma aparentemente rude, questionou: “Você não tem nada pra me contar, Daniele? = Eu sou sua advogada, pra mim você pode falar” (Toledo, 2016, p. 53). Assim, os diversos preconceitos conjugados tiveram mais força do que as múltiplas evidências que, quando somadas, claramente sinalizavam que, no mínimo, havia algo errado no caso.

<= o:p> 

2 INJUSTIÇA TESTEMUNHAL POR EXCESSO= DE CREDIBILIDADE AO TESTEMUNHO PERICIAL

 

A ideia de que uma injustiça testemunhal pode ocorrer apenas em virtude de déficit preconceituoso de credibilidade foi bastante contestada = em obras posteriores ao texto original de Fricker. José Medina e Jennifer Lack= ey estão entre os autores que fizeram apropriadas considerações com respeito à possibilidade de excesso de credibilidade ser um gerador de injustiça epistêmica.[6]

A uma primeira vista, o argumento original de Fricker é persuas= ivo. Alguém que é excessivamente credibilizado não é desrespeitado e minado enqu= anto ente cognoscente a ponto de se poder dizer que foi vítima de uma injustiça epistêmica. Utilizando o próprio exemplo de Fricker (2023, pp. 38-ss.), uma professora que envia seu trabalho a um acadêmico mais jovem que a admira e,= por isso, não faz críticas úteis à melhora do artigo é uma situação hipotética = em que se visualiza como o excesso de credibilidade pode ser prejudicial, pois= a professora ficará na falta de considerações que poderiam ser importantes pa= ra a melhora do trabalho. Mas, ainda assim, a professora não sofre um mal a pont= o de se poder dizer que foi vítima de uma injustiça epistêmica. Ao contrário, o = excesso de credibilidade nesse caso superestima as capacidades da professora enquan= to informante.

Caso se traga a discussão para o contexto jurídico, o mesmo par= ece ocorrer em relação ao perito e ao policial. Preconceitos de valência positi= va atrelados à condição de autoridades epistêmicas[7] dos peritos e de agent= es do Estado dotados de boa-fé fazem com que seus testemunhos sejam frequentem= ente acompanhados de uma presunção de veracidade. Isso, por óbvio, pode oferecer= riscos ao momento de determinação da hipótese sobre os fatos de um processo judici= al. Em especial quando se leva em conta que peritos e policiais podem cometer e= rros que nem mesmo refletem má conduta, como serem vítimas do chamado viés de confirmação forense (no caso dos peritos)[8] e de falsas memórias (= no caso dos policiais)[9].

Ainda assim, tanto o policial quanto o perito não estão sendo postos em situação de desvantagem e desrespeito enquanto informantes. A situação é absolutamente o oposto de uma ofensa a estes agentes enquanto en= tes capazes de contribuir ao conhecimento dos fatos.

Ademais, a credibilidade não é um bem que se adeque ao modelo distributivo de justiça. Esse modelo abarca mais comumente bens como a riqu= eza e serviços de saúde, que possuem natureza finita e, por vezes, escassa. Entretanto, a credibilidade, geralmente, não é finita e, por isso, normalme= nte não vem acompanhada de uma competição. Também por essas razões a credibilid= ade não se ajustaria ao tratamento distributivo (Fricker, 2023, p. 39-40).

Mas, logo de partida, a ideia de que o excesso de credibilidade= não gera um mal digno da alcunha de injustiça epistêmica pode ser contestada. Lackey (2020) propõe o conceito de injustiça testemunhal agencial pa= ra abarcar os cenários em que um falante recebe excesso de crédito em contexto= s em que sua agência epistêmica se encontra obstruída ou subvertida. Por exemplo, pode-se considerar o contexto em que, após horas de interrogatório distante= de boas práticas epistêmicas, um interrogado confessa um crime. Nesses casos, a posterior retratação não recebe a credibilidade que lhe é devida, porque há= um excesso de credibilidade em consideração à narrativa de culpa do falante no momento da confissão. Consequentemente, esse indivíduo sofre um mal e é pos= to numa situação de desvantagem, configurando uma injustiça testemunhal agenci= al.

Entretanto, talvez um dos pontos centrais da discussão — que importa à análise do caso Daniele Toledo — é que seria inapropriado concent= rar a discussão sobre injustiça epistêmica apenas em atenção ao falante, desconsiderando-se o contexto conversacional em sentido mais amplo. Medina (2011, p. 16-17) foca sua argumentação precisamente nesse aspecto. O autor pontua que uma injustiça epistêmica não se detém a somente um momento, possuindo uma trajetória temporal cuja desatenção é inadequada. Além disso, explica que uma injustiça epistêmica nem sempre é perceptível de forma dire= ta e imediata. Nesse sentido, argumenta:

 

Injustiças epistêmicas (assim como as formas de justiça que contrastam com elas) são criadas e mantidas por meio de um esfo= rço sustentado ao longo do tempo e entre interações, e não podem, portanto, ser confinadas a um único momento de troca de testemunho. A análise adequada de= uma troca de testemunho requer olhar para o que acontece antes e depois da troc= a, olhar para o que acontece em outras trocas e na sociedade como um todo (Med= ina, 2011, p. 17, tradução nossa).[10]

 

Assim, uma avaliação apropriada da ocorrência de uma injustiça testemunhal não poderia desconsiderar que outros indivíduos integrantes de = um contexto conversacional, para além de um falante, poderiam ser vítimas de u= ma injustiça epistêmica. Haver-se-ia de considerar que, mesmo que a credibilid= ade não seja pertencente ao modelo distributivo de justiça, é necessário se ate= ntar à proporcionalidade na distribuição de credibilidade, especialmente quando = se leva em conta contextos de opressão em virtude de disparidades sociais (Med= ina, 2011, p. 19-20).

A argumentação de Lackey é s= imilar à de Medina, chamando atenção à necessidade de se encarar o fenômeno da injustiça epistêmica em sentido mais amplo, considerando os demais membros = do contexto conversacional e a comunidade em questão (Lackey, 2018, p. 12). Al= ém disso, a autora pontua que, diferentemente do que afirma Fricker, a credibilidade frequentemente é finita, tornando sua distribuição algo inevitável ao se pensar em questões de justiça (Lackey, 2018, p. 18).

A questão se torna intuitiva ao se retornar ao exemplo do espec= ial valor probatório dado para a palavra do policial em contexto brasileiro. A credibilização indevida do testemunho do policial — que está sujeito a tant= os erros quanto qualquer outro — gera, reflexa e inevitavelmente, uma indevida desvalorização do testemunho do acusado, em certo sentido invertendo o próp= rio ônus da prova, que deveria ser da acusação. Isso significa considerar que em casos de excesso de credibilidade ao testemunho policial, realmente, este n= ão é vítima de uma injustiça testemunhal, mas outro membro integrante do cont= exto conversacional certamente acabará por o ser, ainda mais quando se consi= dera o contexto de disputa próprio de um processo judicial.[11]

O mesmo pode ser dito em relação ao testemunho de um perito. At= é os dias de hoje, muitos sistemas de justiça, incluindo o brasileiro, tendem a tratar conclusões periciais embasadas nas “ciências fortes” como categórica= s, embora nem mesmo os resultados de uma prova de DNA o sejam[12].[13] Uma das consequências= dessa indevida percepção acerca da fiabilidade das provas periciais é, com frequência, a credibilização excessiva do testemunho pericial, que, por via reflexa, gera uma deflação de credibilidade à narrativa pertencente ao lado oposto.

Levando em conta essas considerações, pode-se vislumbrar que o = caso de Daniele também é útil para visualizar a ocorrência de uma injustiça epistêmica por excesso de credibilidade. Mais especificamente, há de se observar o excesso de crédito concedido ao “positivo para cocaína”, resulta= nte do exame preliminar de drogas, que, automaticamente, resultou em déficit de credibilidade com respeito à narrativa defensiva de Daniele, colocando-a em situação de desvantagem e desrespeito enquanto ente cognoscente que também = era parte do contexto conversacional.  =

Há de se considerar, ainda, que provas como o exame preliminar = de drogas envolvem considerações técnico-científicas cuja compreensão é de eno= rme desafio à maior parte dos membros de cada sistema de justiça. É por isso qu= e, como já assinalado por Guedes (2024), cenários em que ocorre uma injustiça epistêmica por excesso de credibilidade a considerações periciais refletem = um caso singularmente problemático de injustiça epistêmica. Precisament= e, isso se dá porque em situações como essa não basta simplesmente frear o efe= ito dos preconceitos de valência positiva segundo os quais conclusões de peritos devem ser supervalorizadas, sendo também necessário fazer algo para avaliar criticamente uma categoria probatória que aciona um conteúdo incompreensível aos tomadores de decisão.

A discussão sobre a resolução de injustiças epistêmicas por exc= esso de credibilidade a peritos, então, não se esgota no debate sobre como criar virtudes, viabilizando o que Fricker (2023) chama de justiça testemunhal. É= necessário, também, inevitavelmente, discutir estratégias sobre como avaliar criticamen= te expertise em arena investigativa e judicial, caso se espere atribuir o peso apropriad= o às conclusões periciais.

O ponto fica ainda mais claro ao se fazer um comparativo com a injustiça epistêmica por excesso de credibilidade ao policial. Uma vez que = se freie o preconceito de valência positiva segundo o qual policiais merecem credibilidade por serem agentes do Estado, basta alinhar credibilidade à evidência. Mas as coisas se complicam com respeito ao testemunho de um peri= to, porque para que se alinhe a credibilidade à evidência nessa situação, é necessário que a evidência seja avaliada racionalmente. No caso de Daniele,= os agentes do sistema de justiça teriam de contar com uma forma de entender= as deficiências do blue test para que pudessem dar o devido peso a s= eus resultados.

Uma outra= forma de colocar a questão é assinalar, como faz Guedes (2024), a necessidade de discutir modelos de decisão acerca da prova técnico-científica[14], direcionados à avali= ação crítica dessa categoria probatória, caso se queira conter os efeitos de uma injustiça testemunhal por excesso de credibilidade ao perito. Isso significa que:

 

[...] impedir injustiças epistêmicas em circunstâncias normais já é uma tarefa árdua, tarefa  essa que se dificulta mais em contextos judiciais, e, quando vem o encargo de evitar injustiças  epistêmicas em cenário judicial por exc= esso de credibilidade aos especialistas, as coisas se complicam ainda mais (Gued= es, 2024, p. 243).

 <= /p>

3 A POSSÍVEL INJUSTIÇA HERMENÊUTICA

 

Como já dito na introdução, uma outra forma de injustiça epistê= mica é a injustiça hermenêutica, que se consubstancia quando, em virtude de uma lacuna nos recursos interpretativos coletivos, alguém é posto numa situação= de desvantagem quando é chamado a dar sentido ao que está vivenciando (Fricker, 2023, pp. 17-18). É elementar para compreender como essa injustiça ocorre q= ue se leve em conta a existência de diferentes grupos sociais e se considere c= omo as relações desiguais de poder distorcem os recursos hermenêuticos compartilhados pelos indivíduos (Fricker, 2023, p. 196). Como explica Frick= er (2023, p. 198), situações de injustiça epistêmica desse tipo revelam uma “escuridão hermenêutica”, que impede grupos marginalizados a darem sentido a uma experiência social.

O “assédio sexual” e a “depressão pós-parto” são exemplos da au= tora úteis à compreensão da injustiça hermenêutica. Ao se imaginar um mundo ante= rior à disponibilidade dessas noções, as mulheres não eram capazes de adequadame= nte dar sentido às experiências por elas vivenciadas. Cenários como esses revel= am que já existiu uma lacuna coletivamente compartilhada em relação aos temas,= que fazia com que mulheres não conseguissem se expressar, consequentemente as colocando em uma situação de desvantagem enquanto entes cognoscentes.

A uma primeira vista, a ocorrência de uma injustiça hermenêutica pode parecer distante do caso de Daniele, que expressa apenas injustiças testemunhais de forma bastante nítida. Ainda assim, um olhar atento a suas considerações, em seu livro (Toledo, 2016), sobre como vivenciou o erro do sistema de justiça em relação a sua pessoa, justifica se atentar à possibilidade de se estar diante também de um caso que envolve injustiça hermenêutica.

Um dos trechos do livro de Daniele que respalda a prévia consideração é o seguinte: “Eu não conseguia acreditar, sabia que não havia feito isso. Eu perguntava, confusa e desesperada, mas quem fez isso? Mas qu= em fez isso?” (Toledo, 2016, p. 51). Essa foi a reação de Daniele após o deleg= ado do caso a acusar explícita e diretamente, dizendo que haviam encontrado a cocaína que a própria Daniele teria dado a sua filha em todo o corpo da criança.

A injustiça hermenêutica pode ser captada ao se levar em conta a dificuldade que Daniele demonstrou nessa frase prévia, e em vários momentos= no livro, em dar sentido à experiência de extrema injustiça da qual estava sen= do vítima. Isso, precisamente, porque existia uma lacuna de ferramentas interpretativas capazes de dar sentido à particular situação — um erro de dimensões extremas a respeito dos fatos. 

A consequência da dificuldade constante de Daniele em encontrar meios que demonstrassem o que verdadeiramente estava ocorrendo é que ela po= uco externalizou o que estava sentindo, porque nem mesmo conseguia encontrar expressões apropriadas para isso. O resultado foi Daniele soar fria e cruel= a alguns, inclusive a ponto de o próprio delegado do caso afirmar: “A Daniele= é muito fria, não derramou uma lágrima. Diz apenas que não se lembra de nada” (Toledo, 2016, p. 7).

A injustiça hermenêutica contribuiu nesse caso para dificultar a defesa de Daniele, já que nem mesmo ela falava a seu favor adequadamente. A situação ficou ainda mais difícil quando se considera que Daniele tampouco possuía o letramento técnico-científico que a permitisse colocar em xeque o errôneo “positivo para cocaína” que gerou sua prisão.

O resultado da conjugação de= todas essas injustiças epistêmicas foi uma Daniele descrente de justiça a ponto de planejar retirar sua própria vida: “Mandei uma carta pra minha mãe. Eu tava= me despedindo porque eu tava planejando me matar” (Toledo, 2016, p. 103). Por = muito pouco, felizmente, isso não ocorreu.

 

CONSIDERAÇÕES FINAIS

 =

O caso de Daniele Toledo do Prado é, certamente, um dos mais úteis à reflexão dos riscos oferecidos por um sistema de justiça que é incapaz de se alinhar à racionalidade no momento de descoberta dos fatos, deixando-se afetar, continuamente, por preconceitos. A partir do conceito de injustiça epistêmi= ca em cotejo com o caso concreto em questão, o texto explorou os diferentes camin= hos pelos quais um indivíduo pode ser injustiçado, especificamente enquanto suj= eito de conhecimento.

Foi com isso em m= ente que, primeiro, destacou-se como a conjugação de diferentes preconceitos resultaram em déficit de credibilidade ao testemunho de Daniele. Acentuando= -se, em seguida, que esse déficit se encontrou reforçado no episódio em questão = ao se levar em conta o irracional alto valor probatório atribuído às conclusões apresentadas no frágil exame preliminar de drogas — que reflexamente impôs grande ônus à hipótese defensiva.

Por fim, assinalo= u-se que o caso de Daniele, quando observado com maior cautela, é útil também pa= ra compreender a chamada injustiça epistêmica hermenêutica. Isso na medida em = que nem sempre Daniele foi colocada em uma situação de desvantagem e desrespeito enquanto ente cognoscente em virtude do que dizia, mas, sim, às vezes, em virtude do que não conseguia dizer — por força da falta de recursos interpretativos que a permitissem expressar a extrema situação de injustiça= a qual estava a vivenciar.

 =

REFERÊNCIAS

 =

ALLEN, Ronald J. The conceptual challenge of expert evidence. Discusiones Filosóficas, Caldas, CO, ano= 14, n. 23, p. 41-65, jul./dez. 2013. e-ISSN: 2462-9596. Disponível em: https://= revistasojs.ucaldas.edu.co/index.php/discusionesfilosoficas/issue/view/51. Acesso em: 22 dez. 2022.

 

DAVIS, Emmalon. Typecasts, Tokens, and Spokesperso= ns: a case for credibility excess as testimonial injustice. Hypatia, Cambridge, UK, v. 31, n. 3, 2016.= DOI: https://doi.org/10.1111/hypa.12251. Disponível em: https://www.cambridge.org/core/journals/hypatia/artic= le/abs/typecasts-tokens-and-spokespersons-a-case-for-credibility-excess-as-= testimonial-injustice/DAA5EF8F3FF825FBAFC6D609600D1D97. Acesso em: = 27 out. 2025.

 

FRICKER, Miranda. Epistemic injustice: power and the ethics of knowing. New York: Oxford University Press, 2007.

 =

FRICKER, Miranda.= Injustiça epistêmica: o poder e a ética do conhecimento. Tradução de Breno Santos. São Paulo: Editora da Universidade de São Paulo, 2023.

 =

GUEDES, Michael. = E se alguém te disser que nem a prova de DNA é infalível? Revista Consultor Jurídico, São Paulo, 1 mar. 2022. ISSN 1809-2829. Disponível em: https://www.conjur.com.br/2022-mar-01/guedes-alguem-te-disser-nem-prova-dn= a-infalivel/. Acesso em: 22 dez. 2022.

 =

GUEDES, Michael. O que há de singularmente problemático na injustiça epistêmica por excesso de credibilidade ao testemunho do especialista? Revista do Curso de Direito= do UNIFOR, Formiga, MG, v. 15, n. 1, p. 230–245, 2024.  DOI: https://doi.org/10.24862/rcdu.v15i1.1735. Disponível em: https://rev= istas.uniformg.edu.br/cursodireitouniformg/article/view/1735. Acesso em: = 27 out. 2025.

 

HARDWIG, J.  Epistemic dependence. The J= ournal of Philosophy, New York, v. 82, n. 7, p. 335-349, jul. 1985. Disponível em: https://www.jstor.org/stable/2= 026523. Acesso em: 22 dez. 2022.

 =

HERDY, Rachel. Ni educación, ni deferencia ciega. Hacia un modelo crítico para la valoración = de la prueba pericial. Discusiones, Bahía Blanca, AR, v. 24, n. 1, p. 87-112, 2020. ISSN 1515-7326. DOI: https://doi.org/10.52292/j.dsc.20= 20.2206. Disponível em: https://revistas.u= ns.edu.ar/disc/article/view/2206. Acesso em: 27 out. 2025.

 =

HERDY, Rachel; DIAS, Juliana. Devem= os admitir provas periciais de baixa fiabilidade epistêmica? Revista Consul= tor Jurídico, São Paulo, 2021. ISSN: 1809-2829. Disponível em: https= ://www.conjur.com.br/2021-mar-05/limite-penal-devemos-admitir-provas-perici= ais-baixa-fiabilidade-epistemica/. Acesso em: 15 dez. 2023. 

 

HERDY, Rachel; KUNII, Paulo Akira; GUEDES, Michael. Exame de DNA: match não garante resultado justo. Jota, São Paulo, 21 mar. 2023. Disponível em: https://www.jota.info/opiniao-e-= analise/colunas/quando-justica-ignora-ciencia/exame-de-dna-match-nao-garant= e-resultado-justo. Acesso em:<= span style=3D'mso-spacerun:yes'>  15 dez. 2023. 

 

KASSIN, S; DROR, I; KUKUCKA, J. The forensic confirmation bias: problems, perspectives, and proposed solutions. Journal of Applied Research in Mem= ory and Cognition, Washington, DC, v. 2, n. 1, p. 42-52, 2013. DOI: https://doi.org/10.1016/j.ja= rmac.2013.01.001. Disponível em: https://psycnet.apa.org/record/2013-09216-007. Acesso em: 27 out. 2025. 

 =

LACKEY, Jennifer. Testimony: acquiring knowledge from others. In: GOLDMAN, Alvin I.; WHITCOMB, Dennis. Social Epistemology: Essential Readings. New York: Oxford University Press, 2011. Disponível em: https://citeseerx.ist.psu.edu/document?re= pid=3Drep1&type=3Dpdf&doi=3D096f7fe21bb9ae5ce1553514ab7f6a0927ae626= b. Acesso em= : 15 dez. 2023. 

 

LACKEY, Jennifer. Credibility and the distribution of epistemic good= s. In: MCCAIN, Kevin. Believing in accordance with the evidence: new essays on evidentialism. = Cham: Springer Verlag, 2018. p. 145-168. Disponível em: https://cpb-us-e1.wpmucdn.com/site= s.northwestern.edu/dist/d/2354/files/2018/07/Credibility-and-the-Distributi= on-of-Epistemic-Goods-20mudw0.pdf. Acesso em: 15 dez. 2023. 

 =

LACKEY, Jennifer. False confessions and testimonial injustice. The Journal of Criminal Law and Criminology= , Chicago, IL, v. 110, n. 1, p. 43-68, 2020. Disponível em: https://scholarlycommons.law.northwestern.edu/cgi/viewcontent.cg= i?article=3D7663&context=3Djclc. Acesso em: 15 dez. 2023. 

 =

MATIDA, Janaina. A determinação dos fatos nos crimes de gênero: entre compromissos epistêmicos= e o respeito à presunção de inocência. = In: NICOLITT, André; AUGUSTO, Cristiane Brandão (org.). Violência de gênero<= /b>: temas polêmicos e atuais. Belo Horizonte: Editora D’Plácido, 2019.

 =

MATIDA, Janaina.<= span style=3D'mso-spacerun:yes'>  O valor probatório da palavra do polici= al. Boletim Revista do Instituto Baiano de Direito Processual Penal, Salvador, BA, = ano 3, n. 8, p. 48-52, abr. 2020. ISSN: 2675-3189. Disponível em: https:= //www.academia.edu/42823372/O_valor_probat%C3%B3rio_da_palavra_do_policial<= span style=3D'mso-bidi-font-size:12.0pt;mso-fareast-font-family:"Times New Roman= "; mso-bidi-font-family:"Times New Roman"'>. Acesso em: 15 dez. 2023. 

 =

MEDINA, José. The relevance of credibility excess = in a proportional view of epistemic injustice: differential epistemic authority = and the social imaginary. Social Epistemology, London, v.25, n. 1, p. 15= -35, 2011. ISSN: 0269-1728. DOI: http://dx.doi.org/10.1080/02691728.2010.534568. Disponível em: https://www.tandfonl= ine.com/doi/full/10.1080/02691728.2010.534568. Acesso em: 15 dez. 2023. 

 =

MILLER, Jos= eph; ALLEN, Ronald. The common law theory of experts: deference or education? Northwestern University Law Review, Chicago, IL, v. 87, n. 4, p. 1131-1147, 1993. Disponível em: = https://digitalcommons.law.uga.edu/cgi/viewcontent.cgi?article=3D1933&c= ontext=3Dfac_artchop. Acesso em: 15 dez. 2023. 

 =

TOLEDO, Daniele. = Tristeza em pó. São Paulo: nVersos, 2016.

 =

VÁZQUEZ, Carmen. = De la prueba científica a la prueba pericial. Madrid-Barc= elona: Marcial Pons, 2015.

 

YAP, Audrey S. Credibility excess and the social imaginary in cases of sexual assault. Feminist Philosophy Quarterly,= Peterborough, ON, v. 3, n. 4, p. 1-24, 20 dez. 2017. DOI: https://doi.org/10.5206/fpq/2017.4.1. Di= sponível em: https://ojs.lib.uwo.ca/index.php/fpq/article/view/3098. Acesso em: 15 dez. 2023. 

 =

 



* Doutorando em Direito pela Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio). = Pesquisador bolsista da CAPES/PROEX. Professor universitário na UniSãoJosé.

 

[1] Todas as informações das = quais se faz uso neste artigo com relação ao caso de Daniele foram extraídas do l= ivro de sua autoria, Tristeza em Pó,= de 2016, no qual narra as injustiças por ela sofridas.

 

[2] O artigo utilizará um sen= tido de “testemunho” próprio de Lackey (2011, pp. 02-03), entendendo toda forma = de comunicação cujo objetivo é repassar informação como testemunho — o que inc= lui considerações, verbais ou não, das partes, policiais, peritos etc. Não se f= ará uso do sentido mais restritivo de testemunho, próprio do Direito.

[3] Um preconceito identitári= o é aquele que “persegue” o indivíduo em todas as suas interações sociais, visto que é constitutivo da sua própria identidade (Fricker, 2023, p. 50). <= /o:p>

[4] Sobre os desafios de se atribuir o adequado valor probatório à palavra da vítima em crimes de gêner= o, ver Matida (2019).

 

[5] Informação disponível em = Toledo (2016, p. 145).

 

[6] Sobre críticas construtiv= as ao trabalho de Fricker, ver, também, Davis (2016) e Yap (2017).

 

[7] Toma-se aqui os peritos c= omo autoridades epistêmicas por se entender que estão numa situação de desigual= dade em relação aos demais membros do processo, pois possuem um letramento de natureza técnico-científica estranho não somente às partes como aos próprios julgadores, sendo todos estes, portanto, epistemicamente dependentes dos peritos. Sobre dependência epistêmica, ver Hardwig (1985).

[8] Sobre isso, ver Kassin, D= ror e Kukucka (2013).

[9]= Sobre isso, ver Matida (2020).

 

[10] No original: Epistemic injustices (as well as the forms of justi= ce that contrast with them) are created and maintained through a sustained eff= ort over time and across interactions, and cannot, therefore, be confined to a single moment of testimonial exchange. The proper analysis of a testimonial exchange requires looking into what happens before and after the exchange, looking into what happens in other exchanges and in society as a Whole.=  

[11] A ocorrência de uma injus= tiça epistêmica por excesso de credibilidade pode se dar até mesmo em contextos judiciais em que a disputa de narrativas é menos nítida, como argumenta Gue= des (2024, p. 235) ao se referir a situações como a em que há discussão sobre o pressuposto fático de uma norma.

 

[12] Como explica Guedes (2022= ), até mesmo as provas de DNA podem contribuir a erros judiciais se não existir ap= ropriada preservação da cadeia de custódia da prova (garantindo sua mesmidade e integridade) e atenção à falibilidade dessa evidência quando apenas se disp= õe de uma amostra crítica. Para reflexões mais profundas sobre o tema, ver Her= dy, Kunii e Guedes (2023).

[13] Para maiores consideraçõe= s sobre os desafios atrelados aos diferentes graus de fiabilidade das provas perici= ais, ver Herdy e Dias (2021).

[14] Sobre os modelos de valor= ação da prova técnico-científica ver, a título de partida, Miller e Allen (1993)= e Allen (2013). Retornando ao tema com maior aprofundamento, ver Vázquez (201= 5) e Herdy (2020).

 

------=_NextPart_01DC5369.B776F410 Content-Location: file:///C:/A4623221/file8785_arquivos/item0001.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DC5369.B776F410 Content-Location: file:///C:/A4623221/file8785_arquivos/props002.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DC5369.B776F410 Content-Location: file:///C:/A4623221/file8785_arquivos/item0003.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml <_activity xmlns= =3D"9eaa0b54-ad1c-4201-b6a1-991c8e74b476" xsi:nil=3D"true"/> ------=_NextPart_01DC5369.B776F410 Content-Location: file:///C:/A4623221/file8785_arquivos/props004.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DC5369.B776F410 Content-Location: file:///C:/A4623221/file8785_arquivos/item0005.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml DocumentLibraryFormD= ocumentLibraryFormDocumentLibraryForm ------=_NextPart_01DC5369.B776F410 Content-Location: file:///C:/A4623221/file8785_arquivos/props006.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DC5369.B776F410 Content-Location: file:///C:/A4623221/file8785_arquivos/item0007.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml This value indicates the number of saves or revisio= ns. The application is responsible for updating this value after each revis= ion. ------=_NextPart_01DC5369.B776F410 Content-Location: file:///C:/A4623221/file8785_arquivos/props008.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DC5369.B776F410 Content-Location: file:///C:/A4623221/file8785_arquivos/themedata.thmx Content-Transfer-Encoding: base64 Content-Type: application/vnd.ms-officetheme UEsDBBQABgAIAAAAIQDp3g+//wAAABwCAAATAAAAW0NvbnRlbnRfVHlwZXNdLnhtbKyRy07DMBBF 90j8g+UtSpyyQAgl6YLHjseifMDImSQWydiyp1X790zSVEKoIBZsLNkz954743K9Hwe1w5icp0qv 8kIrJOsbR12l3zdP2a1WiYEaGDxhpQ+Y9Lq+vCg3h4BJiZpSpXvmcGdMsj2OkHIfkKTS+jgCyzV2 JoD9gA7NdVHcGOuJkTjjyUPX5QO2sB1YPe7l+Zgk4pC0uj82TqxKQwiDs8CS1Oyo+UbJFkIuyrkn 9S6kK4mhzVnCVPkZsOheZTXRNajeIPILjBLDsAyJX89nIBkt5r87nons29ZZbLzdjrKOfDZezE7B /xRg9T/oE9PMf1t/AgAA//8DAFBLAwQUAAYACAAAACEApdan58AAAAA2AQAACwAAAF9yZWxzLy5y ZWxzhI/PasMwDIfvhb2D0X1R0sMYJXYvpZBDL6N9AOEof2giG9sb69tPxwYKuwiEpO/3qT3+rov5 4ZTnIBaaqgbD4kM/y2jhdj2/f4LJhaSnJQhbeHCGo3vbtV+8UNGjPM0xG6VItjCVEg+I2U+8Uq5C ZNHJENJKRds0YiR/p5FxX9cfmJ4Z4DZM0/UWUtc3YK6PqMn/s8MwzJ5PwX+vLOVFBG43lExp5GKh qC/jU72QqGWq1B7Qtbj51v0BAAD//wMAUEsDBBQABgAIAAAAIQBreZYWgwAAAIoAAAAcAAAAdGhl bWUvdGhlbWUvdGhlbWVNYW5hZ2VyLnhtbAzMTQrDIBBA4X2hd5DZN2O7KEVissuuu/YAQ5waQceg 0p/b1+XjgzfO3xTVm0sNWSycBw2KZc0uiLfwfCynG6jaSBzFLGzhxxXm6XgYybSNE99JyHNRfSPV kIWttd0g1rUr1SHvLN1euSRqPYtHV+jT9yniResrJgoCOP0BAAD//wMAUEsDBBQABgAIAAAAIQAh WqKEIQcAANsdAAAWAAAAdGhlbWUvdGhlbWUvdGhlbWUxLnhtbOxZT28bRRS/I/EdRnsvsRMnTaI6 VezYDbRpo9gt6nG8O/ZOM7uzmhkn8Q21RyQkREEcqMSNAwIqtRKX8mkCRVCkfgXezOyud+Jxk5QA FTSH1jv7e2/e+70/82evXD1KGDogQlKeNoP6e7UAkTTkEU1HzeB2v3tpNUBS4TTCjKekGUyIDK5u vPvOFbyuYpIQBPKpXMfNIFYqW19YkCEMY/kez0gK74ZcJFjBoxgtRAIfgt6ELSzWaisLCaZpgFKc gNpbwyENCeprlcFGobzD4DFVUg+ETPS0auJIGGy0X9cIOZFtJtABZs0A5on4YZ8cqQAxLBW8aAY1 8xcsbFxZwOu5EFNzZCtyXfOXy+UC0f6imVOMBuWk9W5j7fJWqd8AmJrFdTqddqde6jMAHIbgqbWl qrPRXa23Cp0VkP05q7tdW641XHxF/9KMzWutVmt5LbfFKjUg+7Mxg1+trTQ2Fx28AVn88gy+0dps t1ccvAFZ/MoMvnt5baXh4g0oZjTdn0HrgHa7ufYSMuRs2wtfBfhqLYdPUZANZXbpKYY8VfNyLcH3 uOgCQAMZVjRFapKRIQ4hi9uY0YGgegK8TnDljR0K5cyQngvJUNBMNYMPMgwVMdX38tl3L589Qcf3 nx7f//H4wYPj+z9YRY7UNk5HVakX33z6x6OP0O9Pvn7x8HM/Xlbxv3z/8c8/feYHQvlMzXn+xeNf nz5+/uUnv3370APfFHhQhfdpQiS6SQ7RHk/AMcOKazkZiPNJ9GNMqxKb6UjiFOtZPPo7KnbQNyeY YQ+uRVwG7whoHz7gtfE9x+BeLMYqj7fj2fU4cYA7nLMWF14Wruu5KjT3x+nIP7kYV3F7GB/45m7j 1IlvZ5xB36Q+le2YOGbuMpwqPCIpUUi/4/uEePi6S6nD6w4NBZd8qNBdilqYeinp04GTTVOhbZpA XCY+AyHeDjc7d1CLM5/XW+TARUJVYOYxvk+YQ+M1PFY48ans44RVCb+BVewzsjcRYRXXkQoiPSKM o05EpPTJ3BLgbyXo16F1+MO+wyaJixSK7vt03sCcV5FbfL8d4yTzYXs0javY9+U+pChGu1z54Dvc rRD9DHHA6dxw36HECffp3eA2HTkmTRNEvxkLTyyvEe7kb2/ChpiYVgNN3enVCU1f1bgT6Nu54xfX uKFVPv/qkcfuN7VlbwIJvprZPtGo5+FOtuc2FxF987vzFh6nuwQKYnaJetuc3zbn4D/fnOfV88W3 5GkXhgatt0x2o2223cncXfeQMtZTE0ZuSLPxlrD2RF0Y1HLmxEnKU1gWw09dyTCBgxsJbGSQ4OpD quJejDPYtNcDrWQkc9UjiTIu4bBohr26NR42/soeNZf1IcR2DonVDo/s8JIeLs4apRpj1cgcaIuJ lrSCs062dDlXCr69zmR1bdSZZ6sb00xTdGYrXdYUm0M5UF66BoMlm7CpQbAVApZX4Myvp4bDDmYk 0rzbGBVhMVH4e0KUe20diXFEbIic4QqbdRO7IoVm/NPu2Rw5H5sla0Da6UaYtJifP2ckuVAwJRkE T1YTS6u1xVJ02AzWlheXAxTirBkM4ZgLP5MMgib1NhCzEdwVhUrYrD21Fk2RTj1e82dVHW4u5hSM U8aZkGoLy9jG0LzKQ8VSPZO1f3G5oZPtYhzwNJOzWbG0Cinyr1kBoXZDS4ZDEqpqsCsjmjv7mHdC PlZE9OLoEA3YWOxhCD9wqv2JqITbClPQ+gGu1jTb5pXbW/NOU73QMjg7jlkW47xb6quZouIs3PST 0gbzVDEPfPPabpw7vyu64i/KlWoa/89c0csBXB4sRToCIdzsCox0pTQDLlTMoQtlMQ27AtZ90zsg W+B6Fl4D+XC/bP4X5ED/b2vO6jBlDWdAtUdHSFBYTlQsCNmFtmSy7xRl9XzpsSpZrshkVMVcmVmz B+SAsL7ugSu6BwcohlQ33SRvAwZ3Mv/c57yCBiO9R6nWm9PJyqXT1sA/vXGxxQxOndhL6Pwt+C9N LFf36epn5Y14sUZWHdEvprukRlEVzuK3tpZP9ZomnGUBrqy1tmPNeLy4XBgHUZz1GAbL/UwGV0BI /wPrHxUhsx8r9ILa53vQWxF8e7D8IcjqS7qrQQbpBml/DWDfYwdtMmlVltp856NZKxbrC96olvOe IFtbdpZ4n5PschPlTufU4kWSnTPscG3H5lINkT1ZojA0LM4hJjDmK1f1QxQf3INAb8GV/5jZT1My gydTB9muMNk14NEk/8mkXXBt1ukzjEaydI8MEY2OivNHyYQtIft5pNgiG7QW04lWCi75Dg2uYI7X ona1LIUXTxcuJczM0LJLYXOX5lMAH8fyxq2PdoC3TdZ6rYurYIqlf4WyMxjvp8x78jkrZfag+MpA vQZl6ujVlOVMAXmziQefNwWGo1fP9F9YdGymm5Td+BMAAP//AwBQSwMEFAAGAAgAAAAhAA3RkJ+2 AAAAGwEAACcAAAB0aGVtZS90aGVtZS9fcmVscy90aGVtZU1hbmFnZXIueG1sLnJlbHOEj00KwjAU hPeCdwhvb9O6EJEm3YjQrdQDhOQ1DTY/JFHs7Q2uLAguh2G+mWm7l53JE2My3jFoqhoIOumVcZrB bbjsjkBSFk6J2TtksGCCjm837RVnkUsoTSYkUiguMZhyDidKk5zQilT5gK44o49W5CKjpkHIu9BI 93V9oPGbAXzFJL1iEHvVABmWUJr/s/04GolnLx8WXf5RQXPZhQUoosbM4CObqkwEylu6usTfAAAA //8DAFBLAQItABQABgAIAAAAIQDp3g+//wAAABwCAAATAAAAAAAAAAAAAAAAAAAAAABbQ29udGVu dF9UeXBlc10ueG1sUEsBAi0AFAAGAAgAAAAhAKXWp+fAAAAANgEAAAsAAAAAAAAAAAAAAAAAMAEA AF9yZWxzLy5yZWxzUEsBAi0AFAAGAAgAAAAhAGt5lhaDAAAAigAAABwAAAAAAAAAAAAAAAAAGQIA AHRoZW1lL3RoZW1lL3RoZW1lTWFuYWdlci54bWxQSwECLQAUAAYACAAAACEAIVqihCEHAADbHQAA FgAAAAAAAAAAAAAAAADWAgAAdGhlbWUvdGhlbWUvdGhlbWUxLnhtbFBLAQItABQABgAIAAAAIQAN 0ZCftgAAABsBAAAnAAAAAAAAAAAAAAAAACsKAAB0aGVtZS90aGVtZS9fcmVscy90aGVtZU1hbmFn ZXIueG1sLnJlbHNQSwUGAAAAAAUABQBdAQAAJgsAAAAA ------=_NextPart_01DC5369.B776F410 Content-Location: file:///C:/A4623221/file8785_arquivos/colorschememapping.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DC5369.B776F410 Content-Location: file:///C:/A4623221/file8785_arquivos/image001.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAACsAAAArCAMAAAGhhLFkAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAYUExURQAAAKbOObjYYcbff/v89/3+/f7+/v///1mq9GcAAAABdFJOUwBA5thmAAAA CXBIWXMAACHVAAAh1QEEnLSdAAABLklEQVQ4T62TWXLCQAwF7ZDE979x3jb7GKgi/WFJrefBmOIA py7A5To1oBSJyquC8JjOC6VcnapR0bWA7cU7mcfAXue0EG/g5Dqd81sGV6L+0Y5Ur2HTs+1u7nqe n8kt0SgiQESlWb6ERrHn9cCGaIJ3lXan66pV+kPc8XJ7djm9h3ZZRIbVkJtgiAERJm76uGh2eVZT 5Gip0/UUiezwrV1oVa0nW16n+mZdPrHbc8szWNN2j3vz3TaactGWk44DESQmbFRFu0bsSvYz2XZk sScZE3dPciDiq77KlTH5iil74e+Un4p824bp2CkrvCHjE9SsR4D+Jy3CqWLNckrzVrZO/5nth/17 8AjG6JP3S7wgjA5P8QRl30onCSLuSc7E7UmmI4uZbFeyL8SK4/gDk0kKJzVgwKAAAAAASUVORK5C YIJ= ------=_NextPart_01DC5369.B776F410 Content-Location: file:///C:/A4623221/file8785_arquivos/header.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="windows-1252"





Michael Guedes

 

As múltiplas injustiças epistêmicas no caso da mamadeira de cocaína

 

                         =                                                                            =        Direito em Movimento, ISSN: 2238-7110, Rio de Ja= neiro, v. 23, e664, p. 1-13, 2025.                =     4=

 

                         =       Direito em Movimento, ISSN: 2238-7110, Rio de Janeiro, v. 23, e664, p. 1-13, 2025.<= span style=3D'mso-tab-count:1'>                             3

 

 

DOI: 10.70622/2238-7110.2025.664

 

Submissão em: 24/07/2025 | Aprovação em: 17/08/2025 e 30/10/2025

Editora: Cristina Tereza Gaulia

 

                                            Direito em Movimento, ISSN: 2238-7110, Rio de Janeiro, v. 23, e664, p. 1-13, 2025. =                1=

------=_NextPart_01DC5369.B776F410 Content-Location: file:///C:/A4623221/file8785_arquivos/image002.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAA9IAAAFBCAYAAACb/pcaAAAABGdBTUEAALGOfPtRkwAAACBjSFJN AACHDwAAjA8AAP1SAACBQAAAfXkAAOmLAAA85QAAGcxzPIV3AAAKL2lDQ1BJQ0MgUHJvZmlsZQAA SMedlndUVNcWh8+9d3qhzTDSGXqTLjCA9C4gHQRRGGYGGMoAwwxNbIioQEQREQFFkKCAAaOhSKyI YiEoqGAPSBBQYjCKqKhkRtZKfHl57+Xl98e939pn73P32XuftS4AJE8fLi8FlgIgmSfgB3o401eF R9Cx/QAGeIABpgAwWempvkHuwUAkLzcXerrICfyL3gwBSPy+ZejpT6eD/0/SrFS+AADIX8TmbE46 S8T5Ik7KFKSK7TMipsYkihlGiZkvSlDEcmKOW+Sln30W2VHM7GQeW8TinFPZyWwx94h4e4aQI2LE R8QFGVxOpohvi1gzSZjMFfFbcWwyh5kOAIoktgs4rHgRm4iYxA8OdBHxcgBwpLgvOOYLFnCyBOJD uaSkZvO5cfECui5Lj25qbc2ge3IykzgCgaE/k5XI5LPpLinJqUxeNgCLZ/4sGXFt6aIiW5paW1oa mhmZflGo/7r4NyXu7SK9CvjcM4jW94ftr/xS6gBgzIpqs+sPW8x+ADq2AiB3/w+b5iEAJEV9a7/x xXlo4nmJFwhSbYyNMzMzjbgclpG4oL/rfzr8DX3xPSPxdr+Xh+7KiWUKkwR0cd1YKUkpQj49PZXJ 4tAN/zzE/zjwr/NYGsiJ5fA5PFFEqGjKuLw4Ubt5bK6Am8Kjc3n/qYn/MOxPWpxrkSj1nwA1yghI 3aAC5Oc+gKIQARJ5UNz13/vmgw8F4psXpjqxOPefBf37rnCJ+JHOjfsc5xIYTGcJ+RmLa+JrCdCA ACQBFcgDFaABdIEhMANWwBY4AjewAviBYBAO1gIWiAfJgA8yQS7YDApAEdgF9oJKUAPqQSNoASdA BzgNLoDL4Dq4Ce6AB2AEjIPnYAa8AfMQBGEhMkSB5CFVSAsygMwgBmQPuUE+UCAUDkVDcRAPEkK5 0BaoCCqFKqFaqBH6FjoFXYCuQgPQPWgUmoJ+hd7DCEyCqbAyrA0bwwzYCfaGg+E1cBycBufA+fBO uAKug4/B7fAF+Dp8Bx6Bn8OzCECICA1RQwwRBuKC+CERSCzCRzYghUg5Uoe0IF1IL3ILGUGmkXco DIqCoqMMUbYoT1QIioVKQ21AFaMqUUdR7age1C3UKGoG9QlNRiuhDdA2aC/0KnQcOhNdgC5HN6Db 0JfQd9Dj6DcYDIaG0cFYYTwx4ZgEzDpMMeYAphVzHjOAGcPMYrFYeawB1g7rh2ViBdgC7H7sMew5 7CB2HPsWR8Sp4sxw7rgIHA+XhyvHNeHO4gZxE7h5vBReC2+D98Oz8dn4Enw9vgt/Az+OnydIE3QI doRgQgJhM6GC0EK4RHhIeEUkEtWJ1sQAIpe4iVhBPE68QhwlviPJkPRJLqRIkpC0k3SEdJ50j/SK TCZrkx3JEWQBeSe5kXyR/Jj8VoIiYSThJcGW2ChRJdEuMSjxQhIvqSXpJLlWMkeyXPKk5A3JaSm8 lLaUixRTaoNUldQpqWGpWWmKtKm0n3SydLF0k/RV6UkZrIy2jJsMWyZf5rDMRZkxCkLRoLhQWJQt lHrKJco4FUPVoXpRE6hF1G+o/dQZWRnZZbKhslmyVbJnZEdoCE2b5kVLopXQTtCGaO+XKC9xWsJZ smNJy5LBJXNyinKOchy5QrlWuTty7+Xp8m7yifK75TvkHymgFPQVAhQyFQ4qXFKYVqQq2iqyFAsV TyjeV4KV9JUCldYpHVbqU5pVVlH2UE5V3q98UXlahabiqJKgUqZyVmVKlaJqr8pVLVM9p/qMLkt3 oifRK+g99Bk1JTVPNaFarVq/2ry6jnqIep56q/ojDYIGQyNWo0yjW2NGU1XTVzNXs1nzvhZei6EV r7VPq1drTltHO0x7m3aH9qSOnI6XTo5Os85DXbKug26abp3ubT2MHkMvUe+A3k19WN9CP16/Sv+G AWxgacA1OGAwsBS91Hopb2nd0mFDkqGTYYZhs+GoEc3IxyjPqMPohbGmcYTxbuNe408mFiZJJvUm D0xlTFeY5pl2mf5qpm/GMqsyu21ONnc332jeaf5ymcEyzrKDy+5aUCx8LbZZdFt8tLSy5Fu2WE5Z aVpFW1VbDTOoDH9GMeOKNdra2Xqj9WnrdzaWNgKbEza/2BraJto22U4u11nOWV6/fMxO3Y5pV2s3 Yk+3j7Y/ZD/ioObAdKhzeOKo4ch2bHCccNJzSnA65vTC2cSZ79zmPOdi47Le5bwr4urhWuja7ybj FuJW6fbYXd09zr3ZfcbDwmOdx3lPtKe3527PYS9lL5ZXo9fMCqsV61f0eJO8g7wrvZ/46Pvwfbp8 Yd8Vvnt8H67UWslb2eEH/Lz89vg98tfxT/P/PgAT4B9QFfA00DQwN7A3iBIUFdQU9CbYObgk+EGI bogwpDtUMjQytDF0Lsw1rDRsZJXxqvWrrocrhHPDOyOwEaERDRGzq91W7109HmkRWRA5tEZnTdaa q2sV1iatPRMlGcWMOhmNjg6Lbor+wPRj1jFnY7xiqmNmWC6sfaznbEd2GXuKY8cp5UzE2sWWxk7G 2cXtiZuKd4gvj5/munAruS8TPBNqEuYS/RKPJC4khSW1JuOSo5NP8WR4ibyeFJWUrJSBVIPUgtSR NJu0vWkzfG9+QzqUvia9U0AV/Uz1CXWFW4WjGfYZVRlvM0MzT2ZJZ/Gy+rL1s3dkT+S453y9DrWO ta47Vy13c+7oeqf1tRugDTEbujdqbMzfOL7JY9PRzYTNiZt/yDPJK817vSVsS1e+cv6m/LGtHlub CyQK+AXD22y31WxHbedu799hvmP/jk+F7MJrRSZF5UUfilnF174y/ariq4WdsTv7SyxLDu7C7OLt GtrtsPtoqXRpTunYHt897WX0ssKy13uj9l4tX1Zes4+wT7hvpMKnonO/5v5d+z9UxlfeqXKuaq1W qt5RPXeAfWDwoOPBlhrlmqKa94e4h+7WetS212nXlR/GHM44/LQ+tL73a8bXjQ0KDUUNH4/wjowc DTza02jV2Nik1FTSDDcLm6eORR67+Y3rN50thi21rbTWouPguPD4s2+jvx064X2i+yTjZMt3Wt9V t1HaCtuh9uz2mY74jpHO8M6BUytOdXfZdrV9b/T9kdNqp6vOyJ4pOUs4m3924VzOudnzqeenL8Rd GOuO6n5wcdXF2z0BPf2XvC9duex++WKvU++5K3ZXTl+1uXrqGuNax3XL6+19Fn1tP1j80NZv2d9+ w+pG503rm10DywfODjoMXrjleuvyba/b1++svDMwFDJ0dzhyeOQu++7kvaR7L+9n3J9/sOkh+mHh I6lH5Y+VHtf9qPdj64jlyJlR19G+J0FPHoyxxp7/lP7Th/H8p+Sn5ROqE42TZpOnp9ynbj5b/Wz8 eerz+emCn6V/rn6h++K7Xxx/6ZtZNTP+kv9y4dfiV/Kvjrxe9rp71n/28ZvkN/NzhW/l3x59x3jX +z7s/cR85gfsh4qPeh+7Pnl/eriQvLDwG/eE8/s3BCkeAAAACXBIWXMAAC4jAAAuIwF4pT92AAAA IXRFWHRDcmVhdGlvbiBUaW1lADIwMjQ6MDE6MjYgMTQ6MzM6NDQ3O4avAADQcElEQVR4XuydB2Db xfX4391X8pCs7E1IAiRks/cyCXtvQikhtgstLbRAPPpr6aK7tpOUFlo6/rITZoCyAyFAgtkzrGwC JIzsLUse0vfu/066OHZsSV/JkqzxPu2Xe++kyNJ33N27e/cek1ICQRAEQRAEQRBEPPCGBtsoGDgg D2AIF8YgYDAAj35MyL7AoRcD1gskuCSDQgayAIDhATb1T0OlxBLfDSAYHljXinXNWOeTIH1Y7kG9 Ees9+Dk78DO2obzdFOZWMFo3rJ5yzHYh1D8niMRTWFJxaFN97RqttkGGNEEQBEEQBEEQYeH/WWof e2jeIRxsoyWwUWj1HoSG7Qg0JfAAdQxSb1Pv7REk+NFw34jSV6jgwb5GA3wtmuRrmrhY80XxhE2h NxJEbBSVVt3CGMyRpnli49xZ7+vqIGRIEwRBEARBEAQRXFkeD4PHSckOY0xOZAATsXosSHYIGqr2 0LsyEAke/M8qyeBT1D6VwD7yef0frzt/0s7QGwiiM0UlVT9gHO7V6qMed/XVWg5ChjRBEARBEARB 5BicczZ2ySdj0T4+AQ3mY7HqKCwPw9IRfEP2o6yg9fib30Z76D3BxLu+rXs+WH/lCU36dSKHcc4o L+aG8SKKeyeQAl4TDhBzq7donQxpgiAIgiAIgsh2+GMr8sb1N45hXJ6GJsCpTMKJwKCvfplQKBdx kB9JBg2oNbQEfK+tPeOo3aEXiVzBOb1yJLezd1FUWxbakFLc0lhXe49WyZAmCIIgCIIgiGyD33kn H1d8zZEM5BmMsTOw6hQ8cmW1OVGYaCl9zACWAIiF/qb1r60+99wW/RqRhfCymX2cYHsdRbWtoSMS Fnnqqs/RGhnSBEEQBEEQBJENjHpuWV+Hw34eY/I8BuxsrOqwokZ0Gy8eSwTACwEwF64pnrA2VE1k A/ySmxzO/r2eQ7E4VNOJZu/2Pf3FU/f6lEKGNEEQBEEQBEFkKBOXrBoJHC5Dw/kSVNWqs0orRaQA tKKW4X+flMCeWjVl/AeUgitz4WVlBU7o/zSax2fpqi4xTTjDN7d6sZLJkCYIgiAIgiCIDGLskuWH 2JltGo7kL8Ph/NFYxUKvED3IBrSrnpKMPbLqlYdfFb/+tcqHTWQAfNq0PIdz5OP4EF2gq8KClvNv Gt3VdyqZDGmCIAiCIAiCSHPGLvxooD2/8BrJ4Voc8B+PVZlqPO/CYwNaIBvQLNmEP2MbSLkTDdAd aKXs4EIo2Ss585mm6TMlNDIRaG6VtkCBaAx4A7bAhuaCgPqgYQXNNqctYGvmRbY8FrBJbiswGBQx dYA6DJRlH3zrADxb/bHsh/UD8G8OQ3k4/r2hSUrr9Y0E+bAENn9F8dgOuYeJ9IIfe5PdOdn1CN4T l+qqiOB9+xwa0kGDmwxpgiAIgiAIgkhD+H+W2sePdlwInF3PJFyQJKMv0TTisRqPz/BYh8d6IeAL boovdzU3ffvNhUcF95emA8GAbCdfM0SywAGGwQ/CmtGSwUEM5MEg2Rg838Pxbd2bsJDwmWRyXktA zFt7xoSvdC2RBgSN6Em95uMVvkxXWWGLx109WAlkSBMEQRAEQRBEGjFx8apDwYDvMWAzUA0O2tOQ ZrQSl0lgH2G5XIBYxcBYteqVh7/KFrfmsQvf7WUr7DUBDaYJwPgEtJoOR6v6SHxJrW7HitpAvZiB mLvL0/R4Ok0o5CLKndvpHPkIiiq2QIz4hnrcd28iQ5ogCIIgCIIgehj+2GPGuP6TL+AcbkZVBTxK H9dtlV+ZyY/xK70thXwXOHy4EjavEsXFQRfrXIJzzsYtWTmSCXkUnoej8SKdgOdFudo7Q++whMpN fR9Ice+y08cvD1URqYJfcGu+Y3DeYwzYhboqJkwBZ/nqq18iQ5ogCIIgCIIgeojRLy/tXWBz3oji LXiMDFb2PMrQew2PBhPMt31b93yw/soTmoKvEJ1QLviHji440mD8FMbYSVh1Oh5WVq2VIdYgQf5r 5VbxuLhyQmuomkgWKjq3AwagER09sFg48Hr9pNFd83cypAmCIAiCIAgixYx+ecWIAsO4DZj8HgDr pat7Ch9aBEvQuHhF4LFq66cfiiuvNPVrRIyovdfjT512BHA4Ew3rM9DyOhUYFOqXw7EJ7bJ/goB7 lk8dt13XEQmET7ulyOksfBKftzN0VZzIv3vcNT8hQ5ogCIIgCIIgUsTEhlWTGLBKNK6+g8ZVDwYP k6sksIUCzBdaYOsrXxQXN+sXiAQz/Nmljt4ux1Q04M5jAMqdeETolS5Rkxr1fjDnrCmesFbXEd2E l83s4wRjAV4D5THQLfD6BCN3kyFNEARBEARBEElm4uJVRzGD3YGiSrPDg5WpRQUAexOPp1rBfJKM tJ5j3CvLD7cx2+VokV0FDMbr6v1RHgFPQkD8YdkZ4z8MVRHxwKfdOtDhzF/IAI7SVd1lmcddPZkM aYIgCIIgCIJIEuMaVhxhk8Zv0WBSK5E4lk8paDzLV6SAh1tk4Om1Uydt1vVEmqA9FK7C63Q13h7j dHV70FiTz5gB8/crz5j4nq4jLFJUWn4AA+PFCBMW8bALDem+ZEgTBEEQBEEQRIIZu3jFBLth/A5F laM2lQa0Gty/K0E+LP3skRVnjt0QqibSnXFLVhxn48Z0FL+DRxfByuRCkPI3y04f/46uICJQeN1t Y2z2vBfw6TtIVyUM784dvciQJgiCIAiCIIgEMW7JxwcYvOA3aDmXoGoL1aYC+S3a6/cJAfUrpoxd rSuJDGTswoX5RsFBF3Imb8BrejZWtd8KoIy3J0zw37GyeNKqUBWxP66SyiPxrD2P5y8pedgDZkDl FydDmiAIgiAIgiC6w5CGFUX9gf+UAZuJqiNUm2RUfmeQT5pMuFdvXfEiRdrOPsa/+MlBRl7+91Es w2NQsDJEAK24+gC03rm6ePI3uo5AHCUVUwzOn0QxadHwVS5pMqQJgiAIgiAIIk5UqqMJxVeXoPR7 YDBUVycZ+S0O4f8NLfCf5eeM26griSyGP7Yib/xAfjkDdjuqx4Vqg/jwqPFs3fkXyvUNUDSj8nJm sAdQLAjVJAch5bVkSBMEQRAEQRBEHKhI3GCwexjACboqqeCo/VUcwd+1km9+WhQXB3Q1kWNMXLLq NODsdrzvLkY15PYt5ZfA5MxlxePVSmxO4iqruhGLf+JhBCuSCJrQPyZDmiAIgiAIgiBi4OCGj/s4 oEAFEvshHsketCsX3sdNYc5aNWXCu7qOIODQhhWj88CoRFHtx88LVoJ8Afzyx8vOHP9ZSM9+OOfM UVL+WwbsF7oq6eAz+RsypAmCIAiCIAjCAmrAPn7xiumMsWpUkxLEqA0JTfif/5r+1jkrzzrsS11L EJ04dNHyA+35RgWT7EZgUKjuHQnyNyvZ5tnZ7rnAp03LczpH/j8UrwvVpAgJfyNDmiAIgiAIgiCi MO7lZQfbDNt/gbEpuipZNKIR9I8WMzCb8j4TsXBww4ohhWD8lIU8JfLR2ns/IM0bVp0+8ePQO7IL Xjazj1Maj6fgmeyMlA+QIU0QBEEQBEEQYVDBxMadfs2POMCfUC0K1SYBCR7J5F1gwl+XTx23XdcS RMyEVqhtvwqmYJP4PwZ/XAGbfp9Nq9OOspmjDLAtQHFCqCa1oAW9gAxpgiAIgiAIguiCSS+tHCPt /L9okJymqxKPcuFm8E9/U9OfV597xFZdSxDdZnzDsnEG2P+A4mV4vAd+cV027J12Xl9xErexx5OV I9oSUi4hQ5ogCIIgCIIg2qH2Qk9YvPLHaOCqVehk5YQ2Jci5pmj51aoph3+r6wgi4YxvWHGKAcYs FCcAiB8uKx5/f+iVzMNVWlWqJp5QzA/V9BBSvkuGNEEQBEEQBEFoRi9eNriA2+twsH6erko8Ep4X Jvx0xRljP9U1BJFU1OTQuMUrv8MY/IGBfMHftO7W1eee26JfTnv4tGmG0zlSBfmbGarpcZaTIU0Q BEEQBEEQyKQlK89Hi8ONYrJcRleDKW5fNnX881oniJQyduHCfFvhqB8yyabKFvmD5eeM26hfSlv4 tJt6Oxy9HmLJnNyKFQlfkiFNEARBEARB5DQHNzQUOGBIDYo348GClQlF7sEh950rP/P9Xdx4lF9X EkSPMaRhRVF/wc9u9ItX1p89YYeuTjsKSssn2pnxOIqHhmrShi1kSBMEQRAEQRA5y6ENK0bnAf8f 2s+H6aoEIx+UzVCRCSt/BJFOOEsqpnHO/ovPZvKi5cfPLjKkCYIgCIIgiJxkwpLVF3MOc1HsE6pJ HDjCXiOE+cOVUyYs1lUEQViAX3BrvnNwfi2Kt4Rq0hIPGdIEQRAEQRBETsEfe8wYP3DSbxiwO1BN tCt3qwRZ3QSb//BFcXGzriMIwgKFJRWHGpw/hA/lUboqXfGRIU0QBEEQBEHkDBMXr+rPDPYgimeH ahKJfF8EWBlF4yaI2FBRxR0lFT9EA1rFKkhWyrlE0kKGNEEQBEEQBJETTHh59WRmg6dxsD5KVyWK FpDw2xVsU7UoLg7oOoIgLOAsuX0E4/Z/43N5jq7KBAJkSBMEQRAEQRBZTyi1FXsIgPXSVYniYxGA 6bQKTRCxwadNyyt0jLiZM3Ynqq5QbcYgyZAmCIIgCIIgspqJDatuY8BU8CIjVJMQTDxqVmw1fy2u nNAaqiIIIhrKjbtwRsVVnMHvUR0Tqs04TDKkCYIgCIIgiKyENzTYxsPgv6MRfZOuShDyW2Gy6Sum jl2iKwiCsICjrPIsDuzPGRBMLBq0R5ogCIIgCILIPoa9+ImzX17eYwDsXF2VIOTT0oSy5VPHbdcV BEFEwVE2cxQH291oQF+gqzIc2UiGNEEQBEEQBJFV6MjcC1A8PlSTACT4Jcj/Wzl1whwhBA2gCcIi yog2wLYMRWeoJivYxbVAEARBEARBEBnPoYuWH8g4ew3FxBnRAN+g6Xz68tPHzSYjmiAiUzSj/Bh+ 2Q1twcM48CFYZJMRrQiQIU0QBEEQBEFkBeNeWj4+L8/2BjAYr6sSgFzsb2o6asWUsW/qCoIg9kMF ECsqqbrEVVb5FjOM9wr79DpMvwQCWOojcjO2jTGmlaRAhjRBEARBEASR+Yx/efmxNrvtNTSiD9RV iWD2Cth8zupzj9iqdYIg9sNZVn6qs6TiHcbhSbRgT1B1nPG2aNzcTG1qK7Sfmwxn0efJ3cIsfWRI EwRBEARBEBnN+FeWn2zYjJdQ7B+q6TbNUsjrlxWPLRfFxQFdRxBEO5zXVhzoKqt6iIPRgOqxodoQ ElibIY2GbUoNaeeIg941Gz0TtJocJGskQ5ogCIIgCILIWCY0rD7dYLaFOFzvpau6yyZpyqnLp4y7 T+sEQbSDTysvRAP6l7yAr0L1Gjw6+VAzYIdqEW3O1Ll2253O9/xNPvV9kv03vWRIEwRBEARBEBnJ xCWrTsPB7LMoFoVquomET5sD5vHLp457S9cQBKHhiLO08rtOp7Ea1d/i4Qi+0CVy34p08o3aIIzx rX2OO8HeunXLSboqeTBJK9IEQRAEQRBE5qHcuRkPprhKUDRg+YK/efcpa8+Y8JWuIAgCCQYSK6u6 yDmj4kPO2P1YZSEOARut/p2SZAoMaRVYrP8pp67f/ubrKr2zTVcnE1qRJgiCIAiCIDKLCQ2rjzGY 8RyKCVmJxoH+/1sBmy9cfe5xe3QVQeQ8QQO6tOLiYCAxgKeBQVskbgs4Hd/98QFKSMUe6YLBQ14N eDzNoqXlcF2VbDxkSBMEQRAEQRAZw4SXV0/GAWzC9kRLkL9fOWX8jRRUjCBChFy4q652lFQsZYw/ hVUdAolZRRj2oHt3slekmc34rO+Jpxy8++MPJ+uqVLCDDGmCIAiCIAgiIxi7ZPkh3AaLUExEdG4h pbxlefG4XwohkpknhyAyAj51qs1VWnG9c0bFMs5gPgM4Qr8UF5yFIncnc480A9Y85LyL+JaXFn6D z3NvXZ0C2HYypAmCIAiCIIi05+CGFUPs3PYCikNCNd1Agh9N5+nLTx93j64hiJyFT7+1V1FpxQ+d o45eDYzPRet0vH6pW6ABrSN3y6QZ0r0mTXq7ZcO3mwMeTzB/daqQUmwjQ5ogCIIgCIJIa8YufLeX A4znUTwkVNMtmtGIvmLF6WMf1DpB5CRFpeXHFZVV/sdpz9/AGP8Hmr4H65cSxd7I3UkxpG29XK+4 xk4cu3Pp+xN1VcqQwGlFmiAIgiAIgkhf+GMr8myFvf+HYrfcTINIaJKmvHjFlLHP6BqCyCn4tFuK 0Hi+yVVW+RFjxjsM2A1YnaDI9/vB9uaSTkIeac7XDLvwsokbn3tyY2pdukNIAdtUeHCtEgRBEARB EET6oKIGj1+8ci5jMF1XdQevMOGiFVPHLtE6QeQMBaXlE+3MuAnF6/FISKA+C7R6vesdTufIL1Ae EarqPoyxxiEXXLyi8fPPmj0rV5ymq1OK34TJZEgTBEEQBEEQacmkhtW/weLXIa1b+ATABSuKx76i dYLIenhZWUGhGHAl5/ADVE8J1aYWs9U8xLAb7wODvrqq2/Q58sgnCg4YMXnzs08PlyALdHVK8UKg LxnSBEEQBEEQRNoxsWHVNQyY2sfMQjVxIqEJmLh4WfH4l3QNQWQ1BWXlk+1glKA4A49ERLjvBuZ5 AIbaSmEL6d0jv/+AZwafe8EZ38y/f6MImImImRAPHo+7uhftkSYIgshwlOsjnzYtT5W6iiAIIqMZ t2TFcUwyN4rdbddaTWZeTkY0ke3wGVWDisqqbsPjQzSiP8GqmXj0sBGNSH4Y/jchRjSz298bfP5F p29+4dkPetCIVnyt/kMr0gRBEBlCYUnFoTbGT0XxaBxajsVyJPZQg7EpV0FC1GBTNeg+PLahtB5r VkoBHwYkvNF6X+1yypNKEEQmoNJcOYC/j83aAboqXkxs9aatOH2sClRGEFkH/+7tg5359ouxz78S +/ypWJUQgzWxyPn4LE/TStxwxjYMu/Kalqb1X2zd/u47x+nqnkHCIk9d9TnMWVqpUgkkHwmSgfQD Y34cyXlwxLcLK7di7UaTwZesWXze9PDsb9JloFdUVlWPBQ5QU4gJv2mcW/2O1jrhLKuaieftLK2m FCZlK167AEjZgg/qbrxIO0DAFuCwngXkl17bjtXC7W7Wb085fNpNvR3OXg9rNWvwwbbLrJ7XotLK v+A1UrN+qUPAvY311U9pLYhaGXU4R3aoyyakX97kva9mvVaTjgoOYmPGDGw/r8AnsTtpKb7GdvgJ bIrnNdbVfKDrspai0qrnsK3KqhV6Br5Sj/vuTVqNiqvsliESHHVaTRhMwiM4gEj451qhqLT8MmDG 97WaEPAmedPjrv6dVokeZuzChfn2woMWo3hSqCZuJFK6/PRxc7VOEBmPGmMVOkacgO3WGXici+O+ Y1R16NW0ZS0eo0NifDAGLYPOPn8ZLyg8etMzjzdJIQv1Sz0CjqX+2+iuuZHh4DudVij24PEJNn3v 4Bd81RfwvyLuu0vVpRxXWdWXWIwKaakBL8TFje7qsOkY0Livw4dG7XdIRwJ4rJIS3pEMFje1+F8W D8zZHHop+fBptw50OvO3aDVr8JpQJOZWe7UaEVdp5WJsaaZoNSXg9b61sa76b1oNwkt+3N/JC7dp NeuQpnls49xZ72s1aThKqs40OPwUxTPw6MogVP5EG9HA/kpKtlNNVEpgdsZUCgimImOqlZyu/h0i 3wRT/sEzt/Y5XZF1YBtuYpFV25dUwBbf/bNU5FNLOGZUHWQYYPn9lpHwFhrS3TVy4qKorPIZBuxC rSaKx9GQvkLLRA8zsWHVP/Eaq8jC3UNCxbLTx87SGkFkHHxGldPJ5KHA5GTszg/DMd7xeF8rj7Qe NSLjQNmaYcYj1uh71LGvF40bf8qmp59o9jd6eiS4WEfkzzzumj+nmyG9P3489UvQqP6fj5mPCPfs Xbo+6ZAh3W3UIHYJgHjACzseTvZqNRnS6WNIO6dXjuR2tk6r8aLul0Y8WvBQO1AMxqAI5VjyEO7C Z8qHz4xAWbk6qYZX/XsDj7gRUhZ762pe1WrCKZwxc7zNsKlzemaopgObsKF4BJj5vNfrfUvMv3e3 ru+E8tIocLqOMySch/fFVVg1PPRKB96AQOAnnnmzl2o9ayBDOomGNH4Vr2gaLOr/vl3rKSE4qOSw NQmDSDKk04SJS1ZNZ5zN02p3mL2seGy5lgkibeHH3mR3TOp1J45xXDjWcaLRPJBJGCQZG47jl6H4 lm4ZoNlA4YEj3xg09cyTt76yGHzrlXnW80gprmysq/1f1D3SOBhRAzUrucZ2Y0fUR8ud4FOn2mDg BBzI5ucVOGUvLtkghofkfDQDORbvk4n4tmPx6HqWQSXQZzCfQeAuj3v2R7q2R3GVVq3A23u8ViPi 9fpcYv7dyjBIGvh97sLv8xOtRkLgtYpqTAQDF111lR1aXfmOImdvxuz9cVh6oAR2CHB2BF630/C6 WXE1RQNX3uX1ijli/qwmXZdS+AW35jsH51s15tfi+RmjZcvsf74CRn4/O4gRkrOD8OXD8H4/Dq/P ZJQtN4qxGNJWKCqrWoB//HytRsQP5mHN7lmfatUyOk/hMq1aAX+ffBHvqxfBhA98zeZneJ/s0K91 oKi0agN2NqpjicY6vIbqvHdAtUOOAyYPEUb+OIPLY/BSnIPVJ+NhD77BEuZ5HveshVpJGOq7OUce /XM0eu9ANS9U28bX+Nj+yuv9+kExf36rrrOM+uzCUcdcjVblb1HdPzhHQIKs9nm/ujOez85UsL3c gU+ilVQcwcicWrZMW3tQMNLu8Df3DtgL+tkNc7iU7CAW3IIRdMc7Eg/LEzuxGtLRcM2oOB8MvkCr CrW/3hESIyMAvuN1V6d0O01RWeWlDNgTWvXjoSbIorenQlzkqa99VmtEmjLh5dWTuQ3eRtHSPRiB h1dMGX8txYQgMgVXWeU8bMoSkSc967D37v3p0EuvnOxZ/insfP9dXdvzqBzSzXOrl6XMkLYCn1Ze WFBonMyZvAo7y6vCDHLwG8sFAcHuaK6vVhHpeoxsN6StUDCjapLdgO+BhB/g3462SvA1mOKmnnAn TYUhbYXgnkXpuBqNQZXPb0KoNjyZaEgXlZYfx5gRdq//XvBB3ojFH32BlnlWt3B015DuCtf1M4eC zXYD3sO3h2lzOiBNeUXj3JrHtZoQiqbfOpzZ81Qwjk7usthG/9vnaypPRPuh8kk6YcAfULwdj/0N kPdMCFztc8/urjdBRpBsQ9oKwW0QrPBS/B7KjVUZ1hFJtiGN7c1gB4ePrDxj+PzOa6yrVmlVUgYa 0v8PxwZlQUXKnwJjP0Mp+riDDOm0Z0jDiqIBwN/DZmmcroqX132w6awviouT6gVHELGiJlfzrq+Y 3JXtEgwkyvlyFNMwUFjPYeQXfDXsiqsPbN2+jW1etBDbfeVgmBb4vd71RWrxIa3c3tRqpa+++qXG upofeLe0DEWD+YdY/VXo1Tawj2cX2jksRSP/Xl42s1vGO9E91GwMDjJvFwE5Hg2Rt3R1OA7EQduz eN1m8WnTEmLIZxoqUJByhfbW107GBkENQrtcec1khDCUC3ZEcBBe59u1Yyyei7t7Kg7CXjzzZm/E e/h3Xr/3EGUc6OqwSMa6u1rSAWdJ1YloRKvotPsb0UJK8SPVHiZqEk5tscDfWo4frGa+VVyD9hxr gO1d5/UVPbL3NRdRrtGeuur/h+3BcdjfXSYBNuiXeobmFolG/Qtaiwh2xOfiwDBlYwj1t1Tfr1UI MHhai0QW0F8a/+i2ES3hM2nKS8mIJtIJfslNjqKyypucMyqWo+3ycVFp5Z36pTaa6mvX4MDoX1ol EGYzdgy9+NJhoqWFbW1YnE5GtOKzvR58abt/TCy4q6XRXXOvd3PLoTjA+D1W7T/oU4bYDxxgW+4o q+yRSNbEPlQUY++OPWpPZ7SVSLUKNtPpHPmQ2hcSqso9BOKpq50nhP9I7PxX6uqsgHMR2ZAW8H9o QJeJJ/7r0TVpgbj/np1qhQ3bG+XVEbbFZkwmzJAuKqm6BK2Dl/FTO2UIwO9xc2Nd7T+1mlC8dTUP CAGlKO7vkjSQ2/iLwZVKImUoF1Ts7570tcjDcTDVo75rUgir2xYGOabffpSWk07hdTNPwGJQSIM1 Te6aVVomMpzgvmgG3XVr3SUkXLR86riU7tsniHA4r604EA3oPzn79/qaAfsnjn6DHqyMsV8VlVX9 Ofimdnhl86+xyLrFlXhgnDUNPe8iF7Pn2bYsfhFEc5rNjUn5oZbSPxCLNqh/ieOMKfjNO0WBRqts mAFsoZrhCU5YEz2GeOpen9lqXotDcyv7oK9yTHb9Q8s5i7d+zleypfnMHl+JSiCS8fCGtJRzPPXV f9FaWoLtzd/xeoQPUiMTE+ioqLTiCsbhUWzEuvg8ea+aSNRKUvDWV9+Pv7NWq+1xgMEfJ2M69YgH arZ5man27a8O1aSepkDTIixUoLaoMMM4T4tJh9n4xVpU7UjYoJxEZjHu5WUHYzt4t1bjJSBNefWK KWN77LkhiL0ory5XWdVDvIB/gQb0/2FVv9Ar+0Bj5aeukiqVlaMN5aGEfXLOp+FjDMyBU86y2fr0 tW97dQn4d6bf3IIAaEshmvaG9F689TWvmwFxCorfhGo6wNUMj7OkYr7aC6vriB4guH+Pyf9qNSLY wNzgLKm6Tqs5S+ODf9sgBCg37/1XBzMSJmUYQ1p+7F3m6dBxJA3ZvXPZ6K7+Kw7WH9JqB7Ct6faK tKuk8jzG+IModuWV8bl3uycl0WZ93vW/wELty9qffDSm/+csKz9V60SKCGWnCFyDogqmlXKUZwY+ QFFjHISQ52oh6eDA8yItqkEMuXVnAbyhwWbY7A/g1e1eDAIJ5cunjntRawSRclRuZzWeRQP6XW7j b2CVasMj73fm8Cc1oa61INgnqwWmz0NaTiL7nVIsCoYfaN/+xqvQ9M3XujrNMPf1kRljSCt882at 9ZugZsDDuYRe5Ryc94wKWqZ1ogfwC2bJkFZwDnP49FuTEsgnk1CxAbD9eESrGY1krCtDWgrBfije u7dHjIN48PrELVh0chOU3XTtLppRdTxw9hiK+0fmDiIFlCvvDq0mFbXHxwSpAo91RQGXxlMqCIrW iRQRykwhe85jR8LzWooCOx77206rLYnGcX35aCz2Bmfc3uT7Sg1UiQxnghxSxQCUy37cSAn3LTt9 bIcUjASRKlTqVVdp5S8czpFf4nj2PqxS2YeswhjjcwvLKttiA6g+WQj4jVZzjn7HnSCKDh5t3/HW G+D9Im3nE5qbtvszb0V6Lyq4Fd5kP9JqF7CzHE7j0WC6LaJH0BEJ14e0qAxw2vNVBOucJ+APpibK +FVp3uWKtHzKW18dLRhdWqFScAkpVYTrDjCIf0Va5dhmhnwKxS4/Ay/+B4311er1lOFz17yIf7jr a8Ogr43zp2iyqwcImGoLhMqjnnJi2CdtFDqNs7WcNJjNaHPrRsNpAQ42LbmeE+nLuFeWH47ti9oT GjfYXi5t3LaTxg9EyikoK59cVFb5H6cz/ys0h3+ntpnql2LFaUj2YHtv2qble+ZjkaZLscmj9xFH Sdf4icaOd9+CxjVpHAJDyrfUtmOtZZ4hrQju7YswY4439AWOkUffo1WiZ7C+YiCDQY9ynqb7alZg 0RDSMhcc3Di12IYQrFqLGUXTDo+KornfqnR8K9Kqo+R29ii2UJ0Ci+1FCvirFlOKYBBpRWec05aX 1P3aRGdUNHm8I57Uakrx3TdnKRZbQlpkmAx6iSUVHKjQ/ugsgv9nqd3GbHNR7NIrxxISdorWlivX X3mClZgsBNFtVOYAlcveVVa1xA7GJ2p7IlYXhF6NH8bgSMfgfLWXOkjQc0+KnPKy6HPEUdDn8CPZ zg8/AM9KNRROZ1iHbSQZaUgrzICswCJCZF32fVdZZSjfJNEDyK72XXYNg/HadY8Q8gEtZSz47HVY kVarrClfjWYyISv7ysUaP8it1SBSxrci7Rycr6J0RnL72t3UZP5PyymlaXPLE1jsDmldwNh3sD3t blRdIkYksB5pD1RWAfzrFtNgyXPUAFOrCUe7jp8c0qDFt3unpe9FpC/jxzhU/u/DQ1pcSCFhxsqz DvtS6wSRNJRHVlFZ1W3Okoo1aDyrvvL00CuJgwH8rP02Kq9sqcOiRzySUk3vI4+G3ocfCY2fr4U9 n3yka9MXPzOf1WKQjDWkg6t3EqK4QLK/F1532xitEClEAFunRUsww0hZGpV0xusPqNWWhBiBPQWa sB1duyXUaykjYQHRwZhhXUbZjoxjRtVULG4NaeGQT6tc+lpJKdpNKfJKn2R3ua6fOVRrRArwec2X VBHSUgsaKlb3SQ9OZhqswkJDRY8PbtXChnFJuqXNI2JjYsOqSYyxO7QaFxJkzYopY8kzgUgqjtJb D3GVVc1x2vO/RkN3DlYdEnolKeTbOP+TloMRvLHI9ntc9j3uBOhz2BEQ8DbCjrff1NVpzdpm96xP tRwkYw1phclktByrDltenpvSYqUeKay5Be6FM0kr0oh4YI5K8WZ9NT8NQUOzvSEtfAIyOoiaZ17t x1isCWnBwXxMK9Iq+KFhwL9RjNgOCehZl1Uh5XNa7BoGfcFm6ypdFpEkQhMrskdiCzTJ5rRIg8V5 e7duQdG6Mxh+553Y1TPVFsbt0o3t79sr1/hUtgGCSDjKXnCUVJ3pKq18ymD5qt+/DY9UxQi5rKis ap/XmhBq+0NWwm02MXDqWazX+IkgpYSdH7wHMpABsWilVAHlOpDRhnSz96vF+Ks65Zbej1OcJeU5 n2Ip1XAuGrVoCXyOemsx58FGJSOm5cLScUX6LTG3OqZJlbREQlvwJSZj2yPtdBgzsYg2ky2bvPJl LfcI3DRf0WIkvuMsqTpRy0QKwLaxRyJUh1ZE5HtajUJy0mCplDJYqLzaCilboINLHZFZjC+edhMw 6E77sVu0tlwrbjwqY7I/EJmBmvB2lVTegPbCxwaHF4ExNYGXahuJMQlq20MQb9PXi3DssVOrWQMz DBh41rncceAICDQ2wqbnngHfl1/oV9Mav2iRyuW+AxltSKvInVKyyKsoQdjvKb90amEB0apFSzAA Q4sEY2oFNHNh7aJ2S1igpYxGMlAutiFiyCOtUmPgzR09d7aEVSpKuNZ6hGBwKwnR9hwyzkFFkyZS hYAeaw8kMIvRu5OTBsvpGK72IgZXgyTAh94Ha3Mukm22MPGFVUMZgzbX1XiQIG+ifdFEIim69ifD isoqf+d0GuuBs/9gWzZZv9QzMLhkb8wglQoLxx4pzeKRdBiH/qcUQ8GgwdC8eRNsXPAUtG7bql/s EVqwb9mA5XKQ8l0sX5FqW5OUyvvpcXVgu/MsNj6LsL66qz4oow1pBf6wxVqMxAjHIDsFHksh0mAx pR+TjNG+N41oNXHwKn8WPFbsiWlCIi2Q+4KNSTB7aJWVYduYOHzelrex0J9pfUXa6cyvwsIV0sKD H5wmXgiWvCFO1Xu+iRTgCwTewOsSbA+a82RqJ1ukaXGfdLLSYPF9bt0A5NadwbACqMH/xu0ii4PZ +5cXj3tYqwTRLYpmVB3vKqt6gBUUfMmAqa0CA0Ov9DicG/xGLauJ1B7J3JAUOIcBp50OzlEHBQOL bV70PIjmZv1iUlBbk9bi+OoFbEHuVX2okPJaPIrNgDnGu3NHL4+7uqDRXX0AlpM8dTXHYzmlsa76 fJQvQfkKdTS6ay7y1FWfg/VdbinJeENaBFrf0WJEGOO3JzOyKNERCTymlABo9nylxZzHd/+sLzzu mj+rI5gGIdPYtyK9x+f7pi1pfSYj5t+lpky175G1FWl+3c19sbCU45QxsNSOJRsBYOl6GdzCKjuR EFTchLb2wD17l65OCb65c97HYltIi0yi02AFY5swdpFWgYngCgGRgUx8ZVUxXsFrtRoP61sCvlu0 TBBxwY+9ye4sq7rGVVb5FjNATY6rezL+FGxJg03n06YFvTR9TT61GJHx0buZ3Q6DzjwnaETv/uQj 2P56A3ZuYRMvxQPaEPJJKeVvhYRpfjAP88K2IjSEx6ChfC72nz9Ufai3ruYhPF71zZu1NlGBKzPe sGx58G+fY2ElqukY54zbz9QykWQYiP5atIQEM6MDbBEd2JtH+l21/ULLWYAMRmqU0lqwsUK7Q3nB RF2NVoiASIv7nzOxUouRYXBWYVnlOK0RWUowDZbsmTRYzpLbVHqkESENvvbOm5X+eVGITvDHHjMY sL+jGG/QVylMKF17xlHh0/MRRAR4yY/7o/H8f87JvT7HBuohvBVP0C+lJYzB0ALnyFOVLObf3YiP wOvBFzIUw1kEQ867CAqGDIXtb70Buz7s3vpK0BVbuV5L+WswxQVeEwajwTwSDeXLGutqfu2tq35E RdYWbndSl7v3kvkr0gie1LaIuhFhRqmWiKTDhmnBCrt86z9cqmUi48FuAGQjPpcZ3fh3QsKH6nfh r4s6japW0zhj39dqVJpEkzUDNskIP7f6PZgN2D73MyJrEdLyPunEpsGSRnu37mdCXT2RaUwYOPlG NKG7s+/0Hyumjl2iZYKwTOH0ygloQP/TyQu/wvZJ7c8/MPRK+mNIuEyLOPRgr2kx48gfNBiGXngx 2Hq5YOuSl6BxzSr9imVMbPiVfXA3Dry+K4R/ZNAVW7le19X81jO39rmeDmibFa7ODKTFnMXyQhWZ TytEEmHAxmvRCs+KxYsDWs541D3Gy2b24TOq9q7M5hQed/Vgj7vGhY3dnboqKwg22vi78PcN11Vh cUyvOA6LQ0NaZKSEjeL+e9IiMmfTA7PUFgtvSIvKdXzq1JhiIeQivKysINgeXHaDJe+EdKOpqUWt SFvywWOcJyx6twxFzQ1Bbt0ZycENH/dBK+C3Wo2HL3a0ttA2EsIyyivGVVJxoaus6kWbnS3DVukm rI4p00ZawKCtLRXWYpekHUWHjoPB55yvOgbY/MLz0PS1pR2cKi7Q6xLk702QZ3t37uiLY8mjcdz1 Y6+7+kFv/Zzghyg3ff7dygEq13fBjKpJRTPKj3GWVJ4STF1WVn5u8CgtP1vpjpKKKUWl5cepiZWi 6bcO59NvTWg6s6wwpLHHtXR18GoWOR0GBclJBQyO1lJUREBEyweeUTid/F9OsO10cHhUVxGpp0dX r5gBV2sxKozBWi32OHrVb31Ii8qgghHHqKjKRAScMOB3wfagbz8r6cXSDh0fwJovHkvMPmk12GEA e1e3Pd6trRl57nKdQpn/c7wn4g3ihGNp8f0NZx1mdWKPyGH4tFuKikqrbnGWVKxEa/oZrFJbOePd TpAOHKraQSU0+4OxoDLHI4dz6HfiKdD/xJPB9HmD6a1at4ZdNPbjT3szaDgLOEsI/xgp5W0g5Xsc 2BhHn34/KyqrqsNjgaus6j08vnKVVXqck3u1OvPZVoPlr7Ub8CkzjPc4Z68FU5eB8XzwYMYLSjc4 X8yY8Y7NzpYze/7XTnv+bvycRjxW47EEjwfw83/jLKu4SkVMVx6F+rtZIjsMaRY1l3R7khBZlGiP Wn3Bi3KMViOCLcNz3nm1mZ03uRNslBaI3KW9W2o00iulj4RvtBQVg8HlWiTCk/HtAQ5sLEbvTlAa LHvehfjfvYOZF8SCuzI+2E6uMfrlFSMYYz/WajzMXXb6+B7NrU+kP46ymaPQEKpxOh1fMwZqL74l T7BMQBr2k1Up7rtrD2oZkfbNcDhgyLkXgOvQsdCybStsXPAMBPa0C2+AF4nZ7Tvw96hgb4/hoVKO bcLG/hKDyyc4t6/HduN9xvhTWHcPvv1nWJbgcT6+V9kVB+L796VYjR/lMaruFbUYcC1+/q858EcM m/GZs6Rim6u08qmikspbHTOqDlJvjkR2GNICLPvHo+EW3MBPJA8n2K7CwoLLp2w0W1tv00pWoGey JoY0IhfRDW8wD6QVsE1KK0M6xu+TMFferEVmfnsgLe+TTlAaLNnOrRvIrTsTKbAZyqU7puwd7dji aTHLtUwQnXCUVZ3uKqt8wgCb8uiqwKNP8IUsgjN2vBZVP7JMS2lL/uChMPSiSyF/4CDwrV8Hmxcu ANHcpF8NgQPkgPT7+6GkAr5diceP8Lgc9ckJMpATQT80+C9mnP3VMOALV1nVe0VlVT9SXg/69Q5k hSGNAz/LKUEYg8Nyde9qKlD7U/CKWJmFlkLC95vu/+tnWs8K8kvKx2LR/RUZImMxeHCG0zpSpNeK NLO+Io3vPchxXfnBWiP2Q0WLxXOk2oSMpqlp/btYbA9pkeluGiw1WMF+eu8WrIBXND+nZSJDGLt4 xQQsrgtpsYODg4r1Z09Ibc50Iu3hF9ya7yqrKCkqrVpqACzB1uZSrA6micpK0F7RkiKtx8q9Jk6G weecB0ZBIexe9glsbVgM0uyctEVKmYlxVY5hAPc4HY6v0Kj+5f6xtrLCkMYfGEsuMMPBTVoxTBKO 6ytuxCsSPUKnFFUqn5vWsgYOTLmfEDmMBBlrao1NukwXYoqAadjZKVok9qOQFagV+4zvZ3UauxdD WmS6mwbL4Sg4B4v8kAZviPq/WzLgifTBbgRXo+MzcKRcsvKMCfdrjSDAVXbLkOAe1sF567E5rWMM jtQvZTmszVaRjH2hxbRC5YceOOUM6HvMcerZhW2vN8CuD94LylkHg7743986ncYK5RERqswSQ1ow s1GLlmCMT9IikUBU1DzGYbZWwxGQUv7AU1dbq/WsgoO8XotEz9JjrThjLKYUQEJCWq284ImL7fsw fqyWiP3gwLKnPZDC6j7p7qXBYvwiLeGzIVXQICKDmLh4lbr28cVOkOA3WeBHlOqMUBSVVh5dVFo1 F8CxTu1hVW2LfilXGLLPnVhuCJXpg71vXxh64aXgGDEKAl4vbHr+WfB+njaxU5PJKDSe52g5Owxp U9piWZFW+73IFTHBuGZUnM+4sQjFSGkG1mH/OKWxrubfWs8qXKVVF2BDf7hWiRxEr8Qpt0bLCOBp teLGpRmrYU/3fBcUlVUdCwzO0mrG4201VRosSwZOvGmw+LRpBg6YsR0NIfx+2h+dYTBDGTzKUTB2 JJN3rSyeFHOiWSL7cJVV3RcKOgVqMnKvh0rOkefMDwa7kgHZo7mS96do3HgYesElYO/VC5q+/QY2 PvMktG5TCR5yA2zg2sZJWWFIcxmTazeeAElRlROEWoXGBu9/YPBntdtDVzRLkH/27txxmLe+5nVd l1UEI5Uz+TetEjlK4TUzD8AippyVNmamlSEtYzfsx+mS0Kjc0Xgi/4ViXAZFOiIemLMZreilWo1M nGmwCp3DT8JiQFCRsDLbYmhkO+MaVhyBF7/NoyAmJGwMNO35ndaInEfm2upzl9glDFWlkMxyLKhk wvPzYeDUs6D/8ScBMwzwrFkNW15eBKKlWb8jV5BtswbZYUhzUyXwtg6DIVoiYqTo2p8MU6vPRaWV f0EDernK3YbVyo2rqwHjLilltfS3jGl01/xMPPHfmCY8MgU+7abeTrA9iaeAPB1ynYLYJ+l8O7w7 tZgWCGiNtcMeqJ4BLec8yoh2Qv+HsnIfnwSL0bvjS4PFwWiL1i2B3LozDRsYv8QivskjCXesPve4 PVojch0J27SU47CgvcKYiM3OSQIFBwyHoZdcDo4DRwT1PSuWwY63XsdrlXs7MfAXt03yZoUh7WsV AS1aJTTjnbswV2nlL7o8yqp+iUbynUWlVX9EeY7anxJMhF5a9THqO1lBwbdg8AWMsSr8nM4urBKU UfCYkDDN6zWHNdbV/LTxvrusRwHOIDjnrKi04mKn06VWaYpDtUSa0DMtuzSCs8cxIOCZf3fMD9HD GKbh06Jl8vNcaiU+53HMqJrqhAHvYROroslmHRICFvdJx50Gq201U4JJbt0ZxPiGZcozJb77XsKH K159eK7WCEJZjhRkEJHAQ2m9mNE5BHaKYDYb9DvhZBh85jlgK3SA2doC2998HXa+945+R+4hBVut xewwpAFssd1gkvXSUq7CsJH6XZcHwG/RSP4VY/AzlG9T+1OYSoQeCsO/N0+fwEPtD1iF1opaofiH CiAGgcDRXt/6gR539VXeuupHxPxZaWUgJAJ+3c19HSVVZxaVVf7OWVKxUiWNx9NJK9FEEHxeYpyk k750C6zjbfHFbEgzm4x1AiEr4NNv7RXMZ1pa+StXWeVHhgEvY3XWBrNsWv/ROziys+RBEWsarMLr b1dpwvamCtvSNPevb2mZyAA42CqDRVyISvHrX6txBUEEwU6RDGmEgQzaK0zIHnk+8gcNhqEXXQau saEdXI1frIUNT/wPGj9rsyNzElPCR1rMEkM634xtRZoB5ZGOFwmfeNe9n4/Gcn88xje6q8/D8mYV QMwzb/ZSnSYl0xnmKqt6UR9LXKVVb2K5HI/tzjznDoPDiwzYL/B9GZ8flkgsezs967CYjdak8wXE /J2wI9k7yZaNOLpoDz7FY7PTnr87mM+UsTvxWmZ90DWxeLHqa5OSBstms+9z65awQCBaJdKcCS+t HoZ9Ylx5o9Fgem7Z6ePVBBSRxfDv3j7YVVY5HdvPf2Db+bJqT/VLXUOu3UEkg2DOYsECBcGKFKH2 P/c5+lgYfO4FwYBifs8e2PziQtj+WgOI5qxbI4uV3a331a7QcpYY0t7WWF27MzEheCJRU1vfCXN8 N7i6DPIOHMzUKcMZ34/VGgaHOUcdszXYEJZW/qqorOKEWAZLGYIKFnWmPk7H33wilsqNPeY9f0Ru gc9Mh0T9Fkg7Q1q8d68fC3VYhjFwaTEbUflw928P1KrzIDxyEav7pAc7ZpTHsk+8zZAGMGl/dAbB bXALFnkhLSaEMP3K+43IQpTHjquk8gY0nhuc+fYN2CbMw/bzh/jSVDzO5NNuHRh8YxdIkLQiHYTZ 1X8NxlPWx+YNGAhDL7oUek86LDio2f3JR7DxqcehecO3+h25jQR4u/1Eb5YYQPmxroJmm+EXK9Lr rn44zPFgcHXZXfPHxrrqMk9d9eHeFjkYGzXV+L0f+ufB1aepahWGAX/LWVLxFRrVswtKy9uSx2c4 ytU2G1bWiZQT6vQsIyFdp3ZjDMHJY/vdmQe1B3sxA8qQtrQdgYE1927+3Uq1JUJNUCiafSKYSpHI AIa9+IkTL/QPtBoTOEZ/YOXUSWqynsgiXGUzjygqq6p32vM3Amf/wfvjNKzuNO52Om1Ha7ETXEJa RKnuaZgMpf4SjCXdkFar0H2POQ6GnH8R2Hv3geYtm2HjM0/Arg8/AGlSF7gXKWUHb4pcNShjWm3J dcQDNdsa3TX3etzVx5ogVQCZZaFX2jgAjerb7cxYptx11J5BXZ+pfI6/1eatrzW8JhRJf8uBUprH qxV7lcYLH6M38T3UqqQ3lgb6SWCf94YVmIzVmyZVxHR/43OhVm2zFU9be7B9j1O1ByoehABxNf7u 32OvugTfkzN9imfe7I34cH2s1chYTIPltAdzRwfvIfzsl8Xcaq+SifSnX17+dFWEtBiQ4Bf+FpVz msgCVPBVV0nFhcpbEcD2IQOYgdVRUkHyo7TQCcFMiuCOSCaD55Dx5AZJzh8yFIZefDn0mjgZhL81 GExs8/PPgn8XzWfsjwmig1dWdhjSBUasv6PHw8hnKj53zYvede8fiQPIP6LalbFyptozWFRW+Yyj bGZG5+tWrhtqQKeijjfWzXpXrdirNF4ed83JeCaG48+/A9/WlpSdIBjImNoWCSxdJ2Ri+l5Msqw3 JIPtwVP3+lR7oOJBeN21j2J78EtPXc1Ur9ccgo3h7VLCRv327EaCxejdFtNgcbbPrVtKitadSUj4 kZZig0HdyrMO+1JrRIaiDOiiGZWXO2dUfISK2pKh3LYtwiZroROmtGVlutRYYcBChrRMzlYilRe6 /8mnwZBzzg/uhaZgYlGQ8GVz3azlWguSHYb0nh2x/o7duiTiQAWcwQHkHTis/A6qXQ6g8eG/0ADb J67SqlJdlVV43HdvUu7vOIAeg+pToVoi1xGMNWrRKllhSAuQMbqCZxdi/qwdje7qv/p8vkPRoK7X 1VmLBGlxn3T0NFgq7zZ+4t73SGhpeVbLRJozafHKU7GzD2sMRaCltSXwey0TGUjQgC6tuNgxo+ID ZrD/4X2gMrvESth7h/MArUgr2uKusIQb0s5DxsCwS6+EotFjKJiYRbDve1SLbWSHId23V6xuhZbS dxCR8dbXzhdSRjKUXdi4uovKqv7Np07NygBvagCN5+FyFB8M1RC5DJexTdIxKdPSkJYyxhVpxmjQ g4j5dzeiQY1torxLV2UlTcs8KjWVpXs9Whosp+g/Bd9VpNX3Gx/82wYtE+kO5yp2SszgYLRuzdkT v9YqkWE4S2ee7Cwpf12l/2QMYgkouD+H8mNv6jK+RrOX+hTN3ixDQ3TZbex9+8Hg8y6EAaecBjwv j4KJxcYjumwjOwxprxlrgJ8tWiK6ibeu5gEJMFerXcIAbnSOOuaxcA1mpqM8Pr1e8wYU28LhE7mJ ZLG2Lenp2o2Do5j2ektBqUra4/V+VY7FGyEt+9CR3V8KaZGJmgaLt4vWTW7dGcOYFz8ZhJ37FVq1 jgS/BPYXrREZhMr17iqr+h9nttfxyT5JV3cHe/5k1yFa7sgXXnLtVrDQPnMcR3fbkGZoNPc9/sRg RO6CQYOheTMFE4uRVY11NR9ouY2sMKQdDlusaRdoJjSBsEBApa9oCWlhucQ5yVWn3IG0nlWI+bOa wBSVWiV6nq727ycfKWNcTUvXIF0yJg8SyQO5sTfYIiqfvpTyVq1mJ9b3SYdNgxXqD9hFWkULi5Eh nSHk5+Vfj0UcKa/k/SuKx67TCpEB8Otu7usqrbrLZrOrQLPKAy9hGFIeqsUO6Mm6aOPKrEdKvSLN 2OBgGQ+MQdG48XDA5VdDr3ET9gUTW0jBxGLErcsOZIUhLfyh8PBWEQzWa5FIACqKKxad9g10grHv OkoqsnZw6b1v9vM4uFypVSIH8cnmmAaIMtZ0WSkjpu8VaP7URz5h+6FnrhtCWvYhAy0vqCKkRQat 5S7du9HAVlF7DwhpsK65vppSIWUKEsq0FAvCZIFqLRNpDp82zSgqq7zJmedcgw/xT7Aq4Vv0JOOj tdgVOR17Q4E28F7X7v66jImCocOCK9D9jz8JjPx8CiYWP35vi3+eljuQHYa0YUQJsd8RLiQZO4lG wsNaiggOqP6k3IO0mlUIIaRkMF+rRA4i6v++HQvLkdyxk0zX7Q4xfC/5lV49IPZDgrTULmYiKno5 /sBPtRqZ8Gmw9rl1g1QRf4kMYGLDqhPwmo7XqnUkLFhZPGmV1og0Ru2DdjhHvs+A/RPVpKVe4iAj ZXfJ+RVpZK/XR0zXwN6nDwycehYMPvs8yOvbLxRMbNHzFEwsbuTj4oE5m7XSgawwpG3cjMmQFhDo ELqc6D7eHXtULlUrqX8KbIYta2ekpYBFWiRyl1jal5i8aVJIgS6jIoFRexoG0Sqyuj2wHr07TBos ti/tlSnIrTtTYJLFsxoNUspaLRJpinpOi8oq/8OZ7TUGcISuTh4SRmqpK8iQxkuiY0z0DqmRMQod 0O/EU4I5oR0HjsAxqdgXTGwjxXGMFzyNd2uxE9mxIi2MvRE/LSA3e+vnfKUVIkGo/KrYS36k1cgw dlFBSVU8qRLSnqatLUuxCIQ0IieR8KGWrGCpc0wlfEaVciWLZUX6Yy0Q++G7f9YXWGwNadmHYMzi PunOabCcJbePwIH64Vrd3bx8T9a6wWcTw59d6kBLeppWY+GD5VPGvaplIs1Q8QpcZRUlTqexigFT wVPx8Uw+krG9Wzu6giJggQzA9AqVAivi9VD5oPscdSwMu/wqcB06FofZDHzffA0bn6ZgYt1FAiz1 1te8rtVOZIUhzUH20aIF2NtaIBKMZGB1fxuzc6ka6qxDLLhLzaB+GdKIHkOqtq9nECDf1aIVYmi7 UoPD3xyTcc+EfEeLRNdk7Wa05k/3qMjkltLU7J8GizFDBRnTg0O5kLYHZAa9XY6L8bL10qplBIRf 0SF6FkfprYc4Z5S/jKPpOlQHhmpTAzYA4aNR92A/nj6w5t6HTgp7jpg9D3ofcRQccMU06D35MOA2 GzRv2Qybnn8Wtr68CPy7KZhYd5FCRPSizQpDmnHWV4tRkUIqF2QiCeBA6TMtWoBdooUsRJLHQy7T ImNZdcnjl9wU09aUZBPIt1tuTxHhbZJvapnomqxtD4LGrwQcgEdn/zRYDHibW7cAcuvOFJhk12ox FrY1w6asjReQqahgYq7SigqD5X+CD+gUXZ1qBqnVcC13JMY0jNmIvVevPkOOnNjJ64sXFEKfI4+G 4VdOgz6HHwncboeW7dtgCxrPm9GIbkFjmkgIa5uavn5My12SFYY0Gi6Wo9mZHFSkUSIJCMa+0aIV RjjKZkYKMpG5SFAu7suwZ6AUHzmI98FalV5vbUiLTkG//KFaTAs448O0aIWlYv4sy8HVchOpAnKp 9uDzkJ5dxLBPui0NFp9+ay8cJJ8erAbwN7V6rbqIEz3IyEUr+uF1O0erlsF7xP1FcXHOR2BOJwpm VE1yOke+AYzXoNqTk7l2uOr74Twc0jQ9ZOqw9ek7rHXPnr2Ru8HmcgVzQR9w5dXQ+7AjgOflQeuu nbD1lZdh07NPQdM3lN03oUj4s0pnqbUuyRJD2nKi8tVN7hqKGJkksLOMaS8gF7a9++OyCk9dTYXH XT3ZU1f9I11F5BxygRaiw/IP1FJaYEg2XItRkWA1l3Du4nHX/DnYHrirr9ZVWYWUAYuGtFpgCrl3 F9ryz8VibzTa18T99+zUMpHGOPOMK7GINXe0kKHIz0QawKdOtbnKKn9uN+B9VI8P1fYshXmucFuc Ep5uK9OwOYugdds2KBwxEgadeQ4M07mguWELum1vfXVJcB+0bz2t2ySBz73L9nSZ8qo92WFIM2Zp RQcHfY9okUgCHFhMmzEkkwdrkSCyCtO07qpqgEwrQxqfTMvfhwUCT2qRyFF08E5rkdt1GizOQO2P DoL9MqW9yhDwusXh1i0XrSgeS6P8NEClHnWOOvo1fBD/gGraZIwwDRYmLodM1/SQKSOvX3/oNXES DJpyJhQeMFxNRoJ/zx7Y9loDbHjqcfB9+QWeJtpKnhSk+K2V2B3Z4tptxUVYmq2t92mZSAJCtsTk 4smZ9ZWvXMVZWlnuKqua4yypuk5XEVZganzeczQ3r2/AJsfSJiXsA0drMT1gbIyWorHaM2+2ilJP pIii0srvq/agqLTih7oqXbDomcCO5zOqBqFwfkjHfqPVpP3RGcDBDSuU59+pIc06UsB/tEj0ECo2 QVFZ1W02w/4hPoMn6Oq0wSZBRaXuAhamPvvJHzwEhpx/MRSNHgNMh5ZQuaC3vf4qbHjyf+D9Ym1w 8EAkC/mp1/f1A1qJSJYY0uwQLURiSdP9f40hGBYRK81SxBgeUKY0OmSmwY+9yc4Z+y2Kt2E7ekqo lsgEgntqJDyo1YgwxiZpMS3AvnmiFiMj5f1aIlIE3iu/xOI2LDukkuppTCmsuncbTkPeieXenNLL dIowIs1xSEMFCI11zLhp5VofeRz0IEXX/mSYs6R8IQOYAyycwdqzCCPs92rbG5wr5A8cBIPOOBuG nHsByqEhcnAFWhnQT6AB/TmaMTLnY7AlHwE/jbY3ei8Zb0jz794+GIvoBpkQc7REJIumLcqQtjxF JoHtHUwRXeCY3OsIVSgZT6qlFDNE+uAH8f+0GI20MaRVFFfGYLxWIxGQLS1uLRMpQOVdxiLoxSMl S6v2oNn39Wv4rRq1GgV2oxawXZO0Gp0pMHmZlmKhXtx4FKU16yGKSssvYwUFn+DFO0tXpSmdXbj5 tHJlXOdMsLHC4SNg8HkXwpDzL0I5tLvKv3t3yIX7ycfIgE4lEhZ56mssx3/JeEPamc+DUUAjIz/1 zpttPfgPERd69mZ3SIsOk+DSItEFTMBULeK5kmRIZxjNdbPUvtHFIS0io/l1N8eScippOAtHHIZF QUiLhPxf44N/26AVIgVwbuxrD1h6Taxh29+Kgw8r97qi3eBY0mplBjD65aW98a6LNT2SbAXT6mQi kUD4jCpnUWnVfxkzHkfVclabnsJQa9L74cyX4QKQZQ3MMKBozFgYevHlMOiMs6BgkFoXVAZ0KIjY hqfIhbsH8AeYvFXLlsh4Q1pK4zQthkVK+QshBN2JqUDCRi1FRTIo0iLRFUy2pRmRkF4rUBlAejzv EmZrKRLcaSs8Wcs9imTMyh5IbFJBpUwhUonc584tIf0m1rA9jzWC+yZf/ex3tUykMXmG8wJVhDTL vLGmeILlNIBEYigoLZ/oNOAdxuB7uioj8TNb2k8AxIvhdEKfo46FA676DvQ/6RTI6xuaR2/dtdeA piBiPQWe8b/Gmt0p4w1pxuSFWgzHK411teQ+liqYtLxKxSytfOUmfFp5P7y524wrxgQZ0hmId27t c9gwRw3IJTmPOiGYCnDwFX1iEuSCxrqaD7RKpAA+bRoaMUyljArCRPpNrAkwLafBUuB99KxAtEqk MRzkpVq0jJBAwV1TjKuk8gY7M9TklLU4F2mCaRqtWmyDGzBAi1lD/pChMKB4KhxwxTToPfkwMPJD gdP3GtAbnw5rQCtvT9Xmf4PHCnxdXePFqg3FhvTVYB3AJvyHantNAI9IqA9X2y18eKjP3IZ/Ti2A qewLauILPx8+wTd9pMcu7wdLrAu+hu9BXY3z1b+N9rcyjXU+E1QMj5jIaEO6oKx8Mg4p8AhLS8AM UC7fFIIP2HotWiFt0i+kG04nVwOXthUAadKKdCaiPGGYkD/XalgYwMVa7DF4WZma2IoWxMpkAfkL LRMpwllw4Jl4k7S5/+NNlXbtgc89ex12ACu1agHrKeKInoP/Z6kdYg9u19zMmindaIrgl9zkcJVV 3QecqQjpwbgqmQRjspMhjX2iihKf8TC7HVzjJsDQS66AIeecD85RB+HvVUmsQgS8jdC6bQs4RoyC AadNWd1r8qRKCASONgPmGK8Jg73b9zi99bV2j7u6Nx4H4jHRU1dzPJZnNLprLvLUVRcH69zVQz3u GheWdq93vc0L2wo7HN71+fg5Br7O8cjDw4mH+syBjXXVw7AciccYPPDzqw9vdFcficfRqB8bLLEu +Bq+B/UDsFT/1h78fvg9zVbzkOD3FnCWFPIq/Gnfx57qDixnY3kf2gYLtWGuJgM6Xe+0QMgfibnV Xq1ZhikfvUjgw6n2vPYKaRHZjSc1pXsaXGWV/8SfcJNWu0DegTfWH7WScFylVSvwabcSmAe8Xp9L zL/bYjCW+MDvcxd+n59oNRICr1VSgji4Sqp+Chz+rNVofIPfIyU5dPkFt+Y7B+c3azUaa/F7WU0B lBTwuVuCxekhLRgV90xfXe3LWo2borKqBdiEt6WeiYQfzMOa3bM+1WpaUFRatQH7ICt545fjNUyb IF74vZ/D7x3MoRsOvwmTm+dWL9NqynGVVFwInEfbs/ovPK8R2tzMAdvLHe2N0wh48Ddb6QOTBvZ1 D2NfN02r2N/L67x1NZZSc0TCNaPifDB4W/wQr7dlkJh/11atxoyrtHI2jhJv12okfDgAGyieulet isQNtpM7sYg+7hDiIk997bNaI2JgQsPq0zmA6o8sg6PKR5YXj227X4nkUVhScaiN8/+hmFbZH2JB SvP4xrpZHbZ5uEorKoDxjN1CpPI/F40dB86DRwO32XQtNkWBALRs2Qz+XTsh4POCbMWRVnPz1sDu XR/69+xSGQxa8Pnx4jjNKwV4gTM/E7IVrbVWwXgAPwF1NN0Y49h/BRdDuRR5kvEiJoUDSyeT0A9f G4BndiBIlo//Fr8Ay0Nzz2BMtqDcjH+jGd/XJJncyYDtwIuwGz9zB3YuW/C1TTIgNjT7YaOYP6tJ /Y1Ewjln8J3y/nk2NgSlIQYTw7DfGI7fS43thuF3GY7fZTieA6Xvm3VIIhKku9FdE9d2iIxdkS4q LT8Az2+JVruiwev96i9aJlKE5HK1Fq2QcTOnqaBwxkw1OVMc0kJwxmlFOoMRpvkTbKkjdkg2A3o2 VzhnUf6+3Oz1mlFX14nEEsq7zDpETGYsPT1UTKv7pKV8qbtGNJEacJDYtqXAOpLculNAUVnlpWhE KwM0Y41oRVcr0iHDKrNQq89Fh46DIRdeAkMvuhRcKO81ops3bYStDYvhm4fvhy0vLoSd770DnuXL oPGz1dD09fqB/j27z8ZPuAmPW9GwxX6W/YFx9le0Iu8JehowPhefxQc48Eew/lE0QOej/pA61GvB 9zFeg+Vv9ILatfgZZ6F8GpYnoX4MY3AkyiqP+On4vnPxtcvwb5WhXoHn+3fqM4KfzdlrRp7xudNp +NRkJR6f4r32DJZ/VxMczrKKq1zXzzyKX3ZDXAGDlaeeeKBmm1o48NVXv+Spq52nFj097uof43GF WnFXq9443hgA0jwH25M78HgSDfxkBThd5/O3WpkA7pKMNaQZM9SqZ5d7bNXJls3N11rNAUYkDikC UfeDthE2CX9uYxhGBRbYpu3DDPjJkI4NbAbSB9+8WWsFSJUDOCx4wb+n3atTjqvsliH4DSKmt5Em /EjMn7VDq0SKcHC4DYsOgZ6kaaZle9AM21/DwoJrHLl1ZwrYkMaaOmnHyjW+F7RMJAG1oucqrfwV GkEqKnfvUG3mEgCjk7egBHawFtOevP4DoN+Jp8BwFTzsxJMhH/W9NG34FjYueBo2v/Ac+NZ9qdpu /UrGoDx+JuG9puJR3aKMdWXMg832gbNvv91FZVXfukqrGlSUeGdZ1UxXWfm5KlVjcNW5m6jxhqdu 1qKQkV1zmTKupTSHS5CX4fFHvEtexBtFeSV1B78E8R1x311x96kZaUgH3dEAvhvSOqFmuS+l1Cw9 g7d+jgpYsCWkRYFBoXK51hqBFF532xhssKZrtQ0bRe3OeJrmzpqDDX8k9/wBDtn/ei2nFCkdt2AR Nipv0O1pbo0atBEpRK1GM4aDl/3ghrScZjCVCLe7Ge+VaG7AApiP0lFmAOMblg7A0fARWrUEXv8n KXd08lD5lZ0zyh8AxlRQpG4bK+mA0dzSaXyDP+xQLaYlwdXnseOCK89DL7wEXIeOBY51CrVltunb b2DT888GV59bt8W9Wybdwe4JhuHFOg2F76FBOQuv5vOc29c7Syp2usoq3yoqrfxXUVnlTUVlFSeo vfz638VNY92sbxvdNU/iobbunu2dW9s/IMRYIUCNm/+BDZAKimY5iKUEqGp0176t1bjIOEPaMaPq IDD4PBS7akBaAcwrGt3V72md6AkkvKKlqBT2tg/SIoEYeXl/wyLUGrfDy2xkSGc4oQjFTcp9+ttQ TRcw9muVA1RrKUGtRmMnqFY9wyA/9m33/FgrRApxGFCNRSf3ObM1jSfWpIwSvVu+63HfvUkrRBrD wKnidMQ0ThQgHtUikWD4dysHOJ3GEuwnvqOrsgKf2TF4Ip86VflDHxTS0ou8gYOg/8mnwvCrr4X+ J5wc3Au9l+bNm2D722/AN488CFteeiG4FzqHUbnnT2CMfZ8B+ycD/pazf6/dQTfx0qq5eNxSVFp+ XHcX05SbeFN97RpvffX9Hnf1zSoomhcC/VVcDCllNfZHautDl24AaETPRXvxr1qNm4wypF3Xzxxq GKBchrrKL9cipXmNxz0rphQcRFJYpMuosAI4QIs5T1FJ1Q9Y1/vRAnBfLe0nzAKUAYGN92XYgne5 X1rN7qLx9FOtpgQJhX/AIozxLjebYF5K+1lTD7YHl+D90KWHQrNM35gJwi8j75OW5NadKeAAsUOs DgtsX72mudtBMYnOqEUkZz57A8XjQzVZgwmP/qPDdpC8kUeOVUVI63l4Xj64xk+EoRdfDkPPvwiK Rh/atvfZbGmBPcs/hW+feAw2L1wAjatXgWi2Gtc251AnbRJjcD0ef2fMeMc5OH+3q7TyHTSw5xTN qLw8FBOkewj37F0quGRjXc1P1X5rb6t3oDTlFTj2UlHtVdRwNfBZ5Nvc8oOg3E0yxpAunF45AWw2 tf+qi2jKshGkeXFj3awndAXRg3h9LWqgZCm/HA4Ux2kxp3HOKC9mHLqeGZPgUbNuWiMyHOUxIyWo FYUuZ0nxmfipmqnValJxlVZdwICVanU/ZKOU4uJgWiMipbjKZh6B7UE9ing7dEHgq7Q1pH33z1KR Z9eEtM74wSRDOmOQMeW3x06K3LqTQEFp+UTOQRnRae3uHBcS9uw/vjGYcbgWe5T8QYOh/8mnwfCr vwP9jjsB8vruS/LQunMHbH/zdfj20Ydg5/vvQmBPWu62yQTygTE13rmNGex/TgM2oVG9XLmEO0ur ruYlP+5q4TQmxP337FRb03Ds9X2Pu/pAlSHFK+ByseCuFv2WbpH2hjSfNs1QK3U2O1PL84eEajuw 3i/YyWpDutaJHkalT8FW0WKwEZZts6sxo4wZbnCVmqXrQFMsmPieiIkoef16mMb66qeElDNQ7MqY zmPMeDQUACx5qLQpeG91vU1GQpMp2GX7pyQhko+zdObJADbVn4VL69Qs5s9PzzycbYRblZZfNNfN Wq4VIo05uOFjvP9YTNGgmRAURyHBqCwedsZfZtbSPmYeDDpZoGiYHKnFlMPz1erzhODq85DzLoSi 0WOAGfuyxQb3Pr/wHGx8+olgxO0MDB6W7qjxyATlEq4ikzt54RY0rN8rKqv8g7O08jRlE4beFj8q Wng8+aLDkbaGNEeKSssvczpHfMA43ItVXbkePuZtkcc011erzeVEGsGkqfb6WoBdqPfD5Bx82k29 de7vp/E8FOnqLpBkSGchKg+wkCpFBXQ1KzoCh1CL+HdvH6z1hOK4rvxgG+fKWOsXqumAxxRwoUpL oXUiBaggQkWllXdyZluM6sBQbZdkQHsgwmyxIrfuTKHQzD8Wi1jGiD7P9t0x5ZsmIuO4vny0zVDt AUtKP5AOSICuMkGkdoGFMSgcfiAMOP2M4N7nfsed2GH1WQoBjZ+vhQ1PPx7a+7xpo36FSAGqDTqG Afs5Z6zB6Ry5qaisqk6lfktE8LJEkHaGtHLhxpP0G2dJxRrGjMfxDu/KxeMrIcQ1Hnf1VSoXma4j 0gjv3DkqLP1bWo3EcOeIo8NFYM9KVGTuotKq3zsdvb5EI1rl+4vyHFLE7mzFW1f9iCnEeShuD9W0 h0125tveLCgrn6wrEoJa8TTy+JsojgzVdOAbELLYN7daGXNEClCpQlxllT93Oo0vGGO/wqpoewPT vj3weqFBeTVotQ2818mQzhQYqHyzsbB4/ZUnRMyVT1hHeSQZNq48+5LqmdTTsP0MaR18Sk3iJB3l ut332OPhgCuvgUFnnA3OkaOA8X3DMWEGYM/K5fDt44/C9tcbwL+zu5mWiASgMgmUoGH9hLO/a7MK XOYqLT87ESvV8dIjhjQ/9iZ70bU/GeYqqTyyqKTySldp5S9cZVWP4WBik83OluNJ+jW+rQs3brkZ O+efe73mOG997XxdSaQhas+LBKki/UbfL8XZbLUHSGthUbOzWswI9t7nRWVVx7pKK67He/zveHxq y8tbwxjcgT3IvinPCEjo7PpEZA+++tolpokDh1B0yf1gB9vBeNdVWnVHd3NM82m3FBWVVv6FM9sr +LldrXAs9rb4j/HU13yodSKBqI5eDY7xGhztLKm6Dvu9Wmwb3ufcvg6vhwr4ZmnAjO1B2hvSYv6s JvyeHbM3SNjZvLzxda0RaQ7jcLQWrUIpzRIEn35rLwmO51X7r6uyGNlhErmwv13dd93q68KCA6/2 xrNy3e41YRLYHB0XNkVrK+z+5CP49rH5sPPdt8H0NupXiPSCFeElvR6Y8YLTOfKboPt3ye0j9Isp g2GnHi3Bmdro3XkPXWfUnsQuVlXaUJ+h0vqo2XY142TlMxUBHGC+hh9f793in5+ozeHRwAHOB/gF o10QZQhZnQVR50ado/AIeR0OYrvcW6waVqc9/3Otdo0EJ57VQq1FI+JKPprBV3jral7VatygAVmh ErhrNRJ78PtXm6Y5v/n+OV+gIS6Uq6PDwSfgdThDMnY1A5nncdccpt/fARWQwMkLV2m1K9T9ZjVo gdr00p2pR+WqrjqCWO7zSDzscVdHTXfhKqt8Av/cKVoNRy88rEbD3IVHtKBxP8fvpiIhdhtXWdVa LHqHtLAoV2QrE4Dqe6vvH4mF+N075ezuKdQWB+fIo/8PO/s7UO1qIPENCLhbtjbfF0uefNWxoPFc gp+r8hF35TLskRJ+4Ztbe7d67nRdxoP3k8o9EuleSVTfFg3VHqhnTl3TRExev4L37RQtRyR47bn9 A612hfpeqk3Yi1odCnsPmCYc55tb/aVWI4KDmh8zYO23+DyI3zsm76MEXkM1+RB2Xzle4AWN7uoS rRLIpIbVKshgV14rXdIcMEeuPWPCV1ol4iTYD4w6RsUYODNUk+VI+KenrvpHWsMxY+WvsK9SObIT ArPZoGDoMCg8cAQ48DAKwg+RA00+8CxfBp41q0D6KWZehqLGfo8EzMDvm+bOXhmqSi7KkI5s3KUe 9X1WS5BvMgGvev2woCfct7EDV4OFUSEtNeAPvxg782e02gG1n9bp7BXNMEgYpoCzErVHEs+lMqQr Qpol1IOgJkz22xcvPw1rSE+7daDTmb9Fq1mFlPLfjXU1UcP0Ywe0GDsgSwPsRIEG2K2NddUW98NH Bu8TNXkRLsBS4pHyaU9dzSVaSxscpbceYkD+H9E8uBLVrowIgd/9fWy+35ZMrsR2cr1g4GVC+CTn Di5kkTT4KCZhEjB5Er5PPTNdGRt+vLfqmGn+xjNvdtZt+sL7SU2IJcJwTS9iuG9VyhzDABVFOyGY AXOMb94sNeEVFbWFRXnfaFV5KV0TqydZCq/h42jkX6HlnGfUc8v6FjntavLI6kTw8mXFY2MKTEZ0 TVFZ5e8YsF9oNevBsf7vG901v9SqCr76Jt51J2o1LlS6qqDhPGIkFBxwAHAjchie1l27wLPiU2j8 /HNsqCh4WJZg4r1V5/O3lov77kqqF5cypN/TcipQRrIykJrxBzaDZDsYUyujcqsAto4HAmu8nj2f iSf+6wm+uwdBo+QpNEqGaTUlCDBnet2zVIqvTii3TKfTkbJAHlKaNycyYi8OiG7EYpYSgxWx85WQ 8q/eupo5Wu8Av+7mvs48Z1ZGbseH5gErSeNdZZX/xEf6GK2mBBwc1yZqm4WeCIj3/oiHV3HwXK7l tKPw+tvH2my2m/GaqoBk3U4BsRcpYSMOVObJZnGP98Har3V11oH30zt4P2WdIY1958L2A89IqK0l rKDgKa12G+lvuazxvrtCeTgtUFRWtQAtMZUXVHq9e84S8++NaZsK9huqD7JqzMUNtrFLsI2t0mrO M2HJ6pN0uiWr3IOGtPJ4IbqByqHr5LAO73irnoUZD47rZu4d1/Fp5f2cTkMtiMS831VF23aMPAiP UVAwZGiHvc5doYyR5m+/Ce6BViWRlXzjhW1jhNud1MTeTKZ3lhgiiygqLT+AMeP/UFRpf6wYTKux tXtBCPPxpvvmvJZNbqcEYRU+bVqe0zl8KkrnSmCnolWhVn6suucrlEvrJ2hBN5iMPdvsXf+amD+f pt0JguiSSUtWlwIHt1ajI8TVy6aMf1RrRJw4Syu/wxl7UKu5gRQzPHW1Kg2jWo0uBRbDfYfGsoq2 XXTImGAZzXhWCL8fGteuAc+qlZT7ObtBe8G8wOOeFSaDROIgQ5pIOSoqY8GA/JOZAUdwkMp9vo+U TDImd+Jg/xt8x0pgvg887rs3hf4FQRB7UYZ1nnP4WBvwQ7AJH8Yk9MXHpwAkGtcMWvFJ8slgABe5 KSD5utam9avSP+8wQRDpwqSG1X/CQk16W6K1JTBizdkTs9a7JVW4yqqUp8lvQ1qOIOFCT111MFCd 9mA5P1gfAXvfflA0+lBwHjIajHwViiY6/t27YM+qFeBduxZkgPY/Zz0C/s9TX/0XrSUVMqQJgiAI giCIIJMaVj2Aw0O1pSQ6EjYuO31sSrfBZStoSFajIVmp1ZxAgjix0V37tt6epxZPuvS24nl54Dj4 kKABnd9/gK6NTvOmjbBn+afQ9A3N8+QQs1O5bS/7ArEQBEEQBEEQccKsp5Bh8mMtEd0EjeikxwNI N0RABoMJO+yFauKmoxHNGBQMOwD6n1oMB1z9Heh//EmWjGi1QOj98gvY+OyTsPmF58iIziEkyD96 62tjCW4Mo19eGi1bTETIkCYIgiAIgiD2YimnuUICi5R2kogBNAKipZvMOppFs04tyL8XKkEWDBoc 6HvciTD8qu/A4LPOhaKDR0eNvK0QgQDsWbkCNjz+KGx7dQm0bu9O1kIiw5ACoLzRXXOHECImV+sC W+GxWowLMqQJgiAIgiCIENJ6lgAmhco3TSQEprLa5BKb4MF/7h79zJtnuQ4dWzDwtCli+LTvssHn XWjrNX4CGIXWgpcHvF7Y+cF78M2jD8HOd9+CQGOPJ/4hUkuLEHC91109W+uxIflxWooLMqQJgiAI giAIOLjh4z7AwLKro2RssxaJbsIENGkxJ3AeOOLVCYtXvl/Qq/+i/iedMt5x0MHcKCjQr0ZH7X/e +srL8O3/HoE9yz4B2UoxNXOQTWhET/HWV9+v9dhh8ngtxQUZ0gRBEARBEAQ4ZN7lWFgeG5rSXKlF optIljuGNLfbZZ8TTr4aGBypqywhTRM8n62GDU89Htz/7Fu/DispM2ouIgE+kP6WY9GIfktXxQmb MKRhRZFWYoYMaYIgCIIgCELteR6uxehIaFrDti3XGtFtZLMWshajoBB6H3EUDLtiGrM5HLo2OmZr C+z6+EP45rH5sOPN18G/a6d+hchFJEi3z2ue2njfXd/oqu7Qpz9wlYo3LsiQJgiCIAiCIICB3K3F qEgGH4vi4pwLkJUsWBavSBtFRdD3+BPhgCunQZ/Dj7Sc/1kFENv10VL4Fg3o3ViK5pzyfif2R+Iz IqGs0V3zPTF/VrdvBs45NnnQWwp2kK6KGTKkCYIgCIIgCBCSb9FiVBjA+1okYoBPm2Y4y6o65ekW Wbgibe/dB/qffBoccNlV0GvcBGCGoV+Jju+br2HDE4/B7o8/BOn361oiZ5Gw0i/hBE9ddZ2u6TYH v/h+L2zI7GgM04o0QRAEQRAEET+cw8VajIoA+ECLhEXUCpjTObIeB9//DK6GtYNnUbCxvP4DYOCU M2DopVdA0egxwPDGioU9K5bB1pcXgenz6hoit5H3enfsOaa5vvoTXZEQuK1gYEiAkcEyDsiQJgiC IAiCIBRn6TIqDCStSMeIo6Tih1hch0evgpLbOgzeTeAZvyKdP2QoDDr7PBh64SXgGDFKeS1YRpgB 2ILG89fzH4Sd77+ra4kcZ7sEeZnHXfND8dS9Pl2XMOzABwQFCcOCZRyQIU0QBEEQBJHj8IYGGxb9 QloUJDSt3LqMInbHgLPk9hEM5F+0Clzyw7QYhDGZsfmb7P36w6Azz4Eh55wPhUOt2yRSCPCuXwdb Fr8I3zx0PzR983VoH7SU+h1EDvMUgG9So7vmSa0ng5AhzciQJgiCIAiCIOLkkNa+yoi2uoi4Vlx5 pallwgKM2+/G/7al2WHAJ2sxSCYa0rywEPqddAoMvehSKDzAesB3s6UFdn/yEXz7v/mw7ZWXoenr r4KprQgC2QFSzPC4qy/1uO/epOuSggRGK9IEQRAEQRBE97DlcWur0QoGa7REWKCopPJKBnCRVjVy ohaCsIDIHEOac+g1+XA44PKrwTVmrOXZF7O5GXZ+8F4wCveuDz8A05dwb10is7nfa8J4T13tPK0n FTSCQ4Y0wBBdxgwZ0gRBEARBELmOZP21ZIXPdElEgZfN7AOM/U2rbUhg47QYxM9sGWFIFwwbDsMu uQL6HnUMcJvaDRAdlQd6JxrO3/7vEdiz7BOQAYrCTbRHfmqCPNvjrp4u5lZbzhyQAEIGNAPX2IUL reVk2w8ypAmCIAiCIHIcJm3WV6QFrUhbxQm2PzMGQ7XaBtYd2j5yN4NAWvs221wuGDjlTBh81jlg 79VL10ZG+P2w6+MP4dvH0ID+5CMyoImOSPgS75JSr/erI33umhd1bQqRbc+lYTsolonENsiQJgiC IAiCyHU4WB5ICq4GwEQ0nCWVp2BxY0jrhLPwu+UjtIyWNE9LQ5rZbNDnyKODq9COEdayBKkI3LuX fRJcgd790VKQ/oyNo0Ykh7VoxH7Pu2zPWI+7tl7Mn98z975sN8HFrLd/7SFDmiAIgiAIIsdhQvbV YlREwP+VFokw8GNvsnPO7lViqKYz0mBjtKjOv9Bi2uA8+BAYdtmV0PuwI4AZhq4Nj4rCvWfVCtjw +KOw64P3QLRkfEYvIoFIgKVCymu93vXjPO4at3jv3p51UWjnKcIMad0jpx1kSBMEQRAEQeQ4jDGH FqMh1uzk32iZCINzsqsciw4BxfbH4HCQFtVIPm1WpPMHDYYh518EA049HWwOp64NjzKgPatXwbeP PwI733mLgogR7ZFSwvOmCWc0uquP9tbVPNRjK9CdYO1XpF1aigkypAmCIAiCIHIcyWShFiMjYbO4 cgL56kbAMaMKDWT2S62GRYIcpcW0wN6nb3Af9JDzLoT8gYN0bXiUhdS4dg18+8SjsOPtN8D0evUr BCEb8T//CPjlpMa66vN9c6sXh+rTg+HPLlUTh71DGn5bwciQJgiCIAiCIGKHAbNmSIOk1egocAPu xiLqCj+T7VakeUuPjcntffvBgNOmwNBLLre8D7pp4wbY+MyTsP2N18BsVDYTQQT5XEhZ4QXzQI+7 +uam+2pW6Pq0orfD0SHxOQPZluM9FsiQJgiCIAiCIPJ0GRnGNmuJ6IKi0oorGMD5Wo0MY23BxqS0 R9+EnGCUC/fgc86HYRdfBs6DDkZjIjr+PXtgy8svwpZFz4N/5w5dS+Q4rSDhEVPAWd762jHeuppZ wj17l34tLWGG3BfoT8Eh+h6GLiBDmiAIgiAIIseRIC0lBcb3pTLPa0bBZ1Q5GeOztWqFwbpUvqUp NaTtvfvAgOKpUDCkU2auLjGbm2HHe+/Ahqf+B03fUKw5QrUFsFQAlHtNONBTVz3NV1/9khACqzMA CR0NaQmUR5ogCIIgCIKIB2bJkGbAyJAOg4PDz7DoOECPiByiBRzH21JjSDMGrnETYMgFF4PNET2+ nAgEYNdHS4OBxDwrlmFF2gUXJ1LL5xLkHwN+OTEYPMxdPVvMrc68NoHxjnsYpEWPnP0gQ5ogCIIg CCLHYVJaMuSkoBXprnBcXz4abdQKrVqEFalVbCXZuIxrRSwW8gcPgaEXXQr9jj8RuN2ua8Pj37Mb Nj71OOz++EOQ/p7NVET0GDskwHNq5dkvzUked/XoRnfNHem69zkG9nftJkOaIAiCIAiCSB6Ss51a JNrBDeNvWMRsDBcKOUCVkgmr6cdixnA4g8HEhpx7AeT1tZYut2XrFti6+CUINHp0DZFDCJDwqrfV 2w8N5/6N7uoL1Mpzc92s5fr1LKDjHmlm0SNnf8iQJgiCIAiCyHEkw6GzBZiQu7VIaFwlFRcyBudp NSZMu+ilSi544g1pbkCvyYfDsMuuDAYTi0YwH/Sa1fDt44/CpueeAf/utI4XRSSWVrXyjDZ0qddr DvTUVReL++/J3kmz9hHzuwEZ0gRBEARBEIQlBAgypNvBp03LA85naTVmDCmDhnSiV6Tz+g+AYRdf Cn2POga4LfpiW+uO7cF0Vjveeh0Cnj26lshy/Gg8L8S773toPA9VK88ed229mD8rq8Ox88dW5LWP mB9EWptI3B8ypAmCIAiCIHIeZimKFGMGGdLtcDoO/AkWh4a02OHSCBrSjPG48th2RTCY2PkXBSNz R0NKCbs//Rg2Lnga/LvIaz8HaG88D0Hj+TyPu8ad7cZze8b1N9RqdEKC+5EhTRAEQRAEkfPIgBYi I6FRSzkP/+7tg4HxX2o1LiSTwZVoKcDa5uUIMHseDDj9jGAwMcajD/H9Hg9sXrgAdi19P92ica/D M/IFls0hlegm6uK+IqX8gVc0qZXnnDOe28NBHKLFNvA5NLUYE2RIEwRBEARB5DhMgrWwzBxatJTz OPJtv8ciuKIcL5LxUPhs1j1DWrlyq4jczpGjdE1k1F7ojU8/AS1bNuuatOIfaPRVmUKcDwFxhN+E ySDNc9T+XTxjd4CU90iQz+L7lqFOEztdI/H/b+N/bpfNzQd63NVTGutq/i3q/75dv567MD5aS+2J q10jQ5ogCIIgCCLXYcySId0MJq0SIgVl5ZMZMDTsugcHGTSkGUD/YEUcuMZPDLlyu1y6JjxmUxNs eXlRcC+0DKRtSqtqxvhjBueLwcY/shvQgGfqZgm8D/6C57xzZ/2k0V1zERqHkz3uGpe3RQ6Upnms AHE1Gtm/xn//MJqRn2CZe5M+wd8tf2aacAiemxMb3dV/bXzwbxv0qwQimey0Is0Ei+teYWpvBEEQ BEEQBJG7THpl9R/RmvuZVsPig+a+XxQfnvPhnIvKqp5H4/dcrXYD+T3lZusqq3oIlWtCddZgeXkw 4OTTwDFipK6JjG/9Otj+1hsgWjJ+LmQHGowNksFLImAu8s2btVbXd4BPnWrLH3X0aMOECYzDBGBs PP67SXifj8WXk563O4WslSAfDkjxcHalqEoOkxpWLcSn5xythpBw67LTx6oUdjFBhjRBEARBEESO M3HJql8yzn6r1bB4tu50rL/yhCat5iSOssqzDGCLtNpdvu9xV/8HDelXUT41VBWdvAEDYWDxFLAV RV+FFn4/7Hj3LfCu/UzXZB3KkF4opXjRt2vXEvHEfyMmv+bTphkF+cMPMhg7VBr8UAZyLEg2AV+a jEZ239C70p6v8ZgvTXN+49xZ74eqCCtMemX1V3idD9RqEAnyxuXF4/6rVcuQIU0QBEEQBJHjTGpY XYFFTUgLj7/py4LV556bs/ukOeIsKV+KQ+jDdVX3kHCDp676/6EhvQ41S0vLrgmToO/Rx1oKKNa8 aSNse/1VML05s5VY+au/gSf2BQiYi7z3//UjgYReigxeWlZ4/a0HcjAOA8aOwqqjJWPHMIBhoXf0 OFvxeFQI+VDTvFlvWv1dxD4mPL3axXuDyjyAl3UfaA9fs/z0cfO1ahkypAmCIAiCIHKcia+s+hFj 7B6thmXFVjNfXDmhVas5h6ukcgZwVq/V7iOhzLv+/fuco45Rq/wREz7zvHzof/Kplly5pWnCrg8/ gD0rVDyunB7rb8FjEZqcLzRJLOdWKz0mXGW3DJFQeAKKxzJgx2F5vKpWr6WA3Xj1nmBgzveu+/Al sXixtej6RJeMW7LiOBs33tHqPoS4YNmU8c9pzTJkSBMEQRAEQeQ4aEhfj4b0XK2GZcUab5648ai0 jVKVTPi0aXlO58jVKFoLjW0FKWYIab7CuX29rumSkCv3VLAVRU833bpjO2x7rYHyQndGoNXzEZ70 RUyKJd5du9+K5gbeFco13Jl/wOHSsJ3CAE7GzzyVMRiqX04I+Jkq1/O/fJtbnxcL7qJI+QliQsPq Eg5Qp9U2TDBPXVk84XWtWoYMaYIgCIIgiBxnUsPKS9FEeEKrYVkBm+yiuDgnV8WKSqtuQYPp71pN CELAdMnERoPxl3RVJ6y6cqsx/Z5ln8Cuj5YGP5iIirqPX5VSPO7z+R8R8+9SrtNx4bi+fLRh46eh VXUyA3YaVnWVYikaJv7759Cq+0Pj3OrOq6ZEt5nYsOoveH2qtNqG3zQnrp46YYVWLUOGNEEQBEEQ RI4zYfHqKdyAxVoNS67ukeYzqpxOIxjUakioJjEICdPQOB/GAOboqjZ4QQH0P+lUcBw4QteEx+/x wPbXG9I1L3QmoLYrPCWkvNtbV6MCv3WLomt/MkwWFJzGQwHklGE9EY8O+3LbsR6kdIsWWed9sFYF ESOSxKRXVj+HV+E8rbbRbPqHrJ06KeaHhwxpgiAIgiCIHGfCK6uP5gyiRv8Vu6HXiovHxuwOm+m4 yip/jsPmP2g1YeAo/GL876UMWJmuClIw7AAYcEoxGIWFuiY8njWrYed776RzXuhM4z1pyj/77pv1 ZKICevFptw50OOyn4XW+DA25IXgvbcQP/pBDYLG3/q8f458hgywFoCG9Ac///m74cgVsyovH04YM aYIgCIIgiBxnQsPqURzgS62GBQ2MAcunjtuu1ZyAT7upt9PR60scgCc8NZIJ8mwjZKAfq3S1Ct3n iKOhaOy4sMuXezGbmmD7m69D0zdf6RoiwSxHY/ePTd7188X8+aauIzKU0YuXDS4w7Ju02p4dy4rH 9tdyTESPm08QBEEQBEFkNbtaW6ztD/VDnpZyBqfD9eNkGNEKJthgxtiRWoXehx0BLgtGtO+rdbDh qcfJiE4uE9FQesDpHLnSVVJ5gwo2p+uJDCSP24/Q4v5s1GXMkCFNEARBEASR42w46zAvSFApmCIi C1i+FnMCPv3WXsDY7VpNOJyzm6WUwbRXLC8P8vpFXhgTfj9se+NV2LrkZRAtzbqWSDJjgLP/oEH9 qev6isTkDydSDgPZpSEtJWzQYsyQIU0QBEEQBEGAZBA92E4gZflz0wKnLf/HWPQLaclAqvzEUDRm LAy/YhoUDA4fy6x508bgKrR37We6hkgyEv/3CZa1IM1zvF7zCM+82o9DLxGZBmOsS0OasfgNadoj TRAEQRAEQcCkhtWvYXFKSOsaacqTlk8d95ZWsxp+2Q0uZ99+at94XPsnLcE59D/xFCgaPUZXdEaa Juz68APYs2IZKjRuTyZ4epWb74tYvtjk978oHphDYdCzBGzf1AxUp7RkEuQflxePu0OrMUEr0gRB EARBEITiG12GRTKWMyvSzj59foBF0oxo5co9+KxzIxrRrTt2wMZnn4I9yz8lIzoZqO0MEhaBFJV+ AYf75tYe0FhXPcNbX30/GdHZw8TFq9RzfEhI2w8B67QUM2RIEwRBEARBEGplJnrkKpYbrt38glvz JeNJ2xut9kIPveASKBiyfyaeEMpjdPenn8DGBU+Bf9dOXUskAIGn9kM8v9WmgLO8bFs/T131OZ66 2trm+upPKA1VdsJAHhcsuoBxGTVbQTjIkCYIgiAIgiDQeGOfazEsjMmkRK9ON5wD86bjqHuYVhOK a9wEGHLBxWDv1UvXdMTv8cDmhQtg19L30OxLSBrjXGcXHvcLEFd7W+Tgxrrqoxrran7qq69+Sbjd FLEtFzD48VrqRCtIWpEmCIIgCIIgugGDNVoKj0zifuE0gSPAWaVWEwaz2eSA4qnQ7/gTgeGf6IqW bVth4zNPQMsW8iqOkz14bMH7VO3jnx0KErZ+sMddPd3rrn1UPFCzLfguIreQoFakOyPBv3ZN83qt xQwFGyMIgiAIgiBg3JKPD7Dxgoj7pCXI2uXF4xJuZKYTRaUVVzDGH9NqQrA5HObAM88x8vqGDwDe umM7bH7heRCtLbqGiIGv0aSp9c2tvVsguo4g1MQYm7BkpcqT32kSEK3gNcuLx47VaszQijRBEARB EAQBa844cgOOLD1a7RKWAyvSaEQndG+0vXcf/+ALLolsRO/cCZsXLSQjOjZMCfJZEOIir3f9QY11 1X8jI5rYnzEvLRuPRZftFrZnq7UYF2RIEwRBEARBEGiPCAkMVmi1SyRjg7SYlRTNKD8Gi5NDWvfJ 79+/dfD5F9ptDoeu6UxoJfo5EC20Xdci30opfyuE/+BGd81FnvraZ8X8+aZ+jSA6YDeM07TYCckk GdIEQRAEQRBE95EAn2qxS5hMTgCudIEZxq1a7Db5Awa2DDrngjwjL1/XdKZp4wbYtHABGdHRUeG0 F0qQl3nXvT+qsa7m1976OdGjzBOEhLCGNL62TEtxQYY0QRAEQRAEEYRJEXlgybLXkHZdP1Ploro6 pHWPvP4Dmgadc34+t9t1TWe8676ELS8tAun36xpif6SEjWg8/96EwCGN7urzGt01T4rFiwP6ZYKI DpPhDWkReeIwGmRIEwRBEARBEEGE4J9oMRwD+X+WhrcOMxhpGDdhkRfS4sfep69v8DnnF3KbTdd0 xrN6JWx7dQmecPJI7gIBEhZJIa/yLdszEo3nX/rcs+NOUUTkLmOXLD8ELekDtLo/ZuOOXSu1HBdk SBMEQRAEQRBBmo3mD7GIlNKFH3xwgVq5zSr41Kk2YOwGrcaNrVdv7+BzL3BEWones/xT2PH2m8Hl VqI9crME+Wez1Rzjqas+p7G+5jHx3r20XE/EjZ3xYi12RsKa9Vee0KS1uKD0VxmGCuFecO3tB3E7 mwSMH4x3wUAG0E9Klo9X02TAmvGKbmcgvxIC1jSZrZ+I++5SOfUIgiAIIuvgl9zkcPTpNZkZYjxq B2K/2B+HNoXAwIYDJeUCugv7xS1MwJemAStavF99RoGJIjOpYfVnWIwOaZ2RQhYvnzLuVa1mBUUl VZcwDk9qNS5sTqd3yIWXOI2CQl3TmT0rlsHO997RGoEoQ+RlIeE/Tb71T+Kz2RqqJojug23ZQ1hc E9I6IkHev7x43HStxgVzllZcquWEwcBc53HP/kirKYV/t3KAIx9O0WpCEELu9tXXLtFqyuHTyvs5 HcYlKJ6LJ3cqlgOCL1hDNVDL8XgJRw1PNdfXvprs1AD4fQsdTn6OVpOOzyteFfNn7dBqXLjKZh4h wRil1W7DpPB56mYt0moQR0nVmZzLIq2mBBYw3/HMm71Rq50oLKscZwCM02rC8MH2hcLt7pHIKc6S ylNwMBTLMxKVaOdRwctm9nGAcbpWswJmylbP3NrntGqJorKqY7HZCedGFRc+MF8R7tm7tJowHNeX j+Y2Pkmr3UY2yw+8D9Z+rdU2+HU393XkOcLPimc0zGx0Vz+jlZThun7mUdKwXc4YnI3qkXiE96Ht zB7sGF/D3nEhtDQ/3vjg3zboekIzsWH1wwxgmlY7IaWcsfz0cfO0mhVg2/Us/uYLtBozaDz7hlx0 qSNSdO49K1fAznff0lrO40dDZq4pZE1Tfe0aXUcQCYPfeSefcPo1m1HsckyI99/taEj/VatxwYpK K5WhlVikfNdTV3O81lKKs6xqJgeYpdWEgCfoIxwoqI46pagBKTbqt6F4JR7d3rOj+Qp/0b+8XnFv d43PcDivrTiQF/CURVIUMnCKt272G1qNCzzX/8ZzfaNWE8F6j7u6g2HuKquKOMOfDKQ0L2+sm/WE VjuBv/vX+Lt/o9XEIeT5nvqa57WWMpRrnnPkMVuAQV9dlRCkgEsb66uf0mqXYFt6NGPsfa1mC9vw Ph6oZUvgff4IFleFtEQh7/W4a36olYSR+P5CXo/f8z6ttOEoqzrdAOixydgkI7z1tbZg2qQkE1x5 7t+rBNusH6E6MVTbbUwpYRED86/euXNeTMXvyAQmNayuwKImpHWBlL9Zdvq4O7WW8ThLbh/Buf0L FPFRjR1utzUNufDSQnuv3rqmM94vPodtr72itZymFW8gt/DDn7331azXdQSRcCa8svpoziDsuMwE 89SVxRNe12pcJGePNGPH8Gm3xjT4ShT4gy7WYsbiur7icFdp1Qs4WHgX1WvxaG9EB9Cyf1VFMMTu fpo04QSz1TwEAoFh0t9yYMAvJ5omnCGl+BG+57/43i/1v9vLCLxAf3A6jXU48L+TT7slpSukRI7A 4TwtpZSCEUedmmgjmkgH2I1qokIrGYchwanFbITDVbcXaDkp8GNvsheVVd3m7N9rHfaL92DV/kb0 Jjzuxz7vJyDkuX4TJqv+UPWLJgQOwvJo7BOvRAv5TuwTF+HRfk+cwRi2V8x4wTmj/G1HScUUXZ/T mDIQedmUsYO0lBUwbi/DIi4jmnHeOujs8yMa0U0bvoVtb2SVJ3w8+KWU/xbNYrSaGCUjmkg2XAY9 lrpGgt/jaV6qtbhhzhmVP8C/hH1TV7Ah+MKvtRITQsB0b331/VpNCUEXaKehlvBjcfFC5HzsYMNP EwrYpgIeaC1pKKPW6XT8DsUf47F/g/61kHJOk6/1fjH/rq26zhJqZRtvmFtwsKCM8v3PzTf423+U SNc89TsczsLrtNoJJmUR9jzhZ7o74sXBkZoZDwuDpic97rvVQCpucABVzAw+XqthYcDUDPygkAZ3 43dTbvOdkBI83rqaB7QaxFla+R28BuF7WgQ//xdYWHKLxfthJn5exCAJwmQv+OZW7z+Z0kbRjPJj wODHaLUL2A3YBsRjwKz1uKvHaDlluMqq5mChvDhiIeo9JsBcGC1iqJo8dDjzrtBqJ5jE+4YF7x8r rMbvFLu7kVRtObfjfZGP/74PPvcD8G+OwMqD8VXlDRHr5GnMK9KOssqz8I8cotVO4D1+CxZxrCbK t731s05O5NaUgpKqw2xcnqTVTuB3PRmLfW2ZlD/FMxw25oQp5OKuXBSdJRXTOOcPa9UqLXi8h3/z Y/zD6/A6bpYCmhjI4JYJyZlqyw/E7/g3pUcD26QPJRN/YsCbmcDWA/+92keM/34g/tDh+JbJ+lmP eRLcK5oGiPq/b9dqQnGWVJ3IOfwbxf1d8NXK8dOmFH9vnjt7SSz3Bb/sBpezd99pwFk5qp23tkj5 kLcVfiIeqNmma3KOgxsaChwwZDeK4bzh3lxWPFY9HxmPij3jLClfi0+8aidjAttac+AZ57DCA4aH bVtbd2yHTc8vABnI2ZhZyuvjAQEtv/XV3fW5riOIpDOpYbXyBAuz5U6+v6x43LFaiZuIwcYKZ8wc bzNsK7Sqei3lAvp97Gyt5BB8EAdg39VySnCVVU7Hn7R3z46K5DAYj6j7XnHA+ZNGd83ftdojFJWW H8eYoQyv/V1/1Qzen3xs+5+6u+dUX89/oXhqqGYfeA7+6/OKn4j5s7oVvc4qeK0+wmt1uFYjgr// mMa6mg+02mM4p1eORBNFGaX4CECz198yONGB3PC8fIIfP1mrEfFCoG8y9o22x1VaNR9/rc6piQN6 Ca/jyOHmkB6ZQGvroU33/1W5s6cMNKRxMLTXiJPz8VyG3ePXju3YViV0T3VXFF532xhbXp7VfWCL 8TudoeWEoIyHgt59jsEx49loPKnAG1ZiAsRsSEejqKzqeXyAztWqatOsr2ZKKPPUVddpLem4Sipv QGPrP1pFfEPjmbTD5+h7+Bz9V6vRWCxA3Ntk8ufE3GqvrusSV9ktQwAcEffutyHhCTx3l2utS9Cg 4I6SiqPx+qj7owSPfsEXoqBWfxvvu+sbrSYEtQrtmOz6Dd6rP0V1/4nl5SIgvu+dV/um1uOCT5tm OBwH3sQY+zO2Fft5Z8nNIMX1+8e6yCUmNqx+C++FE7S6PzvQkO6v5YzGWTrzZM5scbl3Dji1uNV5 8OiwW+8CPh9sWvAUmFjmIDi0hEcDIvCbprmzu5ViiCBiZfTLS3sX2JxbUOzy+cSb82/Li8fdqtW4 iW11woSF+KetBp45W3VSWk4R7CItoPEl5qLhn5Q9wImmqLTy+2hEK5+f/Y3oLThYOB2NyF8nInCT asi83vVT8ObBQUNHcLByg8NpvKn2N+uqZKP2UVpFG3I9jC24V10Z0YoXci0aupRsg2iRf9FqVAx7 XkrduwtKy9UqZ9CIlhI24vMf6wpgViOe+K9HBU1sdNf8zFtfewi2kZfgmfpUv9xTLMDezPoAi8Gf VeAurWUMUnnhRGeVMM3T1QSK1137aDQjOhmoVd1Gd/V7+B3KvTt3jMK+4vdYHXUZzTTs4aMrxQGf UTXIObnXi9gv/RzV/ccRD3q95rHdNaIVKnJ3Y13tPYFAQHnl7DfJxQYDM553lVX+n67IObCzi3SO +41d+FGPbOFLNBxscS369DniKG8kI1qYAdi6eFEuGtHYdMinQcijPXXV08iIJnqCfMOhJuzDPp94 l3a7D1HEZkgrpERj2hIDHAUjI7iMJhY02tXJ2hspWkLAn/IoorGiZv9dZVU1jDG1Spwfqg2hDIGA EKcmYrDQnuDAAQfSKFaFavaBneYRLJ+/o9wddVXSMAPCsiGN5+dq5Xql1R6DM9YWQEkISLqrfzqi IxIvC2lR2bvqmBLsYOyLj8DgWXyIkhqdPpMJGkx1tU97P/UoV97aUG2PgEaaGYsr/iBnnvO3Ws4Y sA2LZkg/7t2+52jv3FkNWk88DPvFGFATL9hX/FKapnJ9/zZU2zU2LhJmSBeWVBzqNKTan9s5yrmE f3rra69LtOdU07w5q73eFpXtY/+tOjhGYn9SwShTvzDQ82A/F/F+5IV5Y7WYsQTHjm1eV9ZxHnTI jt6HHxkx9sH2N16D1u0x7XhQz6haAFqD4tuoqPH2wzgerFN7i1H+B9bfhaXa9jMbD9V2q/Kv+C/V Fo9/oAWrPF/Utsr/4fESfobaA6qe39Ske5OwSJpwoqeu5hJPfY3KR04QPQJj0La42gWyiYmE9Lcx G9I+X+NLWFjb6GGkLuCQs3CEChDSS8mq4Ui0m1mi0S50/w/FrvZmNoMwL05mOgCPu7pGDUq02gbe eEPtDF5JdmAf37xZa3UDb4VRjukVx2m5R1Bu3Vjs/Q4tTWbL01rOOfC6WYrGzQBOV6nQtJp8mGwf aDDtJ9LSAfHevX5sCyrxoqqVvx4h5DorY8ndepMKyKjljECy8CvS+Dw94/Wuv1o8dW9aLls1zp31 vhB+ZUyHzcQgAjwhhnRBWflkG+ev4cPcaa8qGgjPeufW3iKSFFVbxR4RfqlSH3WyfLAtu9HpHPGA ygqgq3KCZt6sPOXCGmCGNBIVOb3HcDgOVBO+Mbmo5w8cuLX/KadF3Pawe9mn4PtSBQHvEuVhuAlv 5I902zcb5ZvBFBdKEBcEQF7iNdklvnXvX4Tt83ca66rLGutqfoDyzR53zW1Y3o5HuWq7dXm7p676 VixvbnTX3IjldDyuxOOsRnf10VgO9657vwCf45EiIE4WAN/Bv/szPO5FI13156vwAevu5FSDAPM0 /B7nNM6tpiTZRI/CGxps2PGer9UukKu/KJ7QrdhKe4nZkBbz792ND5ylJHhMytS5dnKWMYNotbrq KCn/D3bOag9aJ6SQ/6cGL1pNGt4tLbdj0Xl1kUFfxtgiNajRNUmBCevu3YxLK3tdk0d7t24pc86t uz0iuMXDAgwKnYU8JXmV+XdvH4x/cO9Eh8/nNdWEH2ERHPz8CW/s+VpNOWarUEGfrG5fsYGN350O XipWYZ323+5FfuHz+q5VnkK6Ii3x1s/5yi/gonCDbcm7b0gXTq+cYAfjZRT3BnNsQ3lo+URzifKk 0FVJQUURltIMkwaRTXOOOqYuk+677vJF8eG70MD7WKudkAyS7r2WbPDZjGk12uZ0bB101nkDGQ8/ fG7auAF2LX1Pa12i4kKoYL5H4De4FOWZKN8DBl/AgL9lA7bSacBmvN9aXWVVu/H4sqi0aqnK5oLy fcqT0VVaWeUqqyhxlZWfWzCjahKffmtwISkcYvHigHqOlZej1139MBrkf1aRs9FIPx8N7fHeubVO FQMiaGgLmI4P3S8lSDf+08V4qNgjKvjh/uCjCc/pLSmne92zXtP1BNGjjDOHRMzggvdtwvLQxe7a rWDSWn7YFKXB0h3bhSEN/6yQab1a6CypqMXGW6Va6Ir3ffNmpSTwmVhwV4sQMlxu1n44qHk+mXum zYD5KBZ4P1uAsavwOsd3vyaA9m7d+HDmpFv3Xpqb16ugLJ6QFoUUpcFy5tnV87/3/ngxVUHzsglv C6ho2kmJvBwN3/2zvsBBWywu5qc4S8rDZgZIN3C02aULqCnl98X8uxu1mtY011d/IkDeodUOcNY9 126Vw9dmZy+g2OV4AQ22mcmKCr4/Ou9+uJzx16n+W8s5AQ6uwg448bWMNqRDbt1MeSFYgttsuwef d/FAbrfrms4EvF7Y9uqSkInZfdTYVhnIoxiDI1FTqXxUu1eB3/sv+I3qAMdpdgM+ddrzlcG9B4/l IYO78p8qZZxrRsX5juvLR0fbmqA8PVQgxaChXV99v6eu5veN7prvoYF8Bh5jvPW1hd4W/xCVSg7f fJFa1faDeXiju/qCpG5JIYg4YEbkVMgSmJq0TQhxGiam1X3SvLAwf+++5aThvL78CCxGhDT4yjtv 1kdaTjuKSqvUYHVmSOuMKcX/JXvWvT3e+prXlcucVvfnAFbAn0iWe64aPGNhdeV9eOH15WHT1CST /d26vV5Pzrp1K8T8+a1YqFlqC7AUeaW0d+tO74m0dCWY6kfCLK2mHJ+pIieD2oNvEVYdbRUmXcBB cKcVaRxmL/DV1SasM08FTes/+Dt+8U6Bg9BmiLuPUNeQc5vqg1QKrk7gefqgqb42pd4SfmmqCYNw ltBMNFRKtZz1CJV3OzyTM3mF3ukcPhWLPiEtMgxY66Czzyu0OcNvi5Y4dNvasBhEc7djw8aLC48J IYOb3YQXZo5a5TZsxmdO50ivWtUuKq38l8oi4LiuPKZUX8rQFg/M2eyZN3upp772WbWq3eye1dPB KgmiE/zOOzmTEDYVKWL6vP6eNaS99X/9GHuYDVqNCE/BipRs79Yt5TPqgddaWuEoqZiCAyqV5zYc 7/fEwEqaIuwMOzbERzuc/G6tJgO1Km0JvJd6Jnp3O7duCfLF4PaGHEcKa/ukkdEq7ZOWkwK/5CYH WipnalV4WwILtEzEiNfvvRdv8h5ZzVdRqrHtrtSqFYY4bXkqJWPag4ZmZ9duaaY6aFq3+0XlHorD 6U650DmLz7VbGWF4De/D5jXsNiI8d9Wp7tOb62Ytxz8YPkMJg3+4SiqP1FpW4922U+2TDmcZ9h7z 8qcx515OF6Tkl2kxKv1PPnVP/sBB4SMAIzvfewdat6psO2lJvlrVZox9H+/f/xp5xueusqrVaFjf GdoaRRDZwdjTrzoJ7/Gw3rTYtr+37vxJO7XabeIypIOdmgTlhmWFVKTB2heZTabn/miV79Pg7CEU wwcrEVJF7045TffNUR3l6pDWGeWG7iyt/I5WE4oJAcvu3VKyK3vCvbu9WzeT0rLhn81I03L0fjDy 7EmN3u3o30vlWw4N5CW8o2bNgzIRM+L+e7BzkY9rNeV4QyuP1t0EGbtFpz1La7pYkX6jsW7Wu1rO KJq+WqqiAXfwHJAQn2u3c0Z5JZ6cSC54W5qW7VGu1qlHQLv84Z0owI7h4eAkXpaz/soTmqSEsHtf bdw4VosZhRqX4nN5iVYjUjR2/BfO0WMGaLVLvOu+BM+qFVrLDHDgVYTnYFBhPj9UVxFExmNIHnHR jYFl+9UScRslkgmrK1JJTYNVNP3W4XhSjtLqHm/TV0u0nFZIcPw/vHyRZv1avNzskb23amIEieg6 h8bk3a7rZw7VasLwuWevw8LSgBIb/KEFJRWnaTUl7OfW3eplgtyGERWUBwtrowaZbPfudm7djNy6 u4sE2TOGi8Yv4CdYBEJaVOx2ZiTTYyYhdFqRlqAyNmQkalUaf888rQZhcaxIY39yFP7D32k1HI+o yPJaTim+rS1qsnBXSOuSQ539ev1Jy1lNpIEnA5aRhrTDeSB+74hjsiB5Awas7n/CSRFX3f17dsOO N15N64CBGnx0YSmO934rpXm8r772QBVwjIKEEdkCf+wxA59r5UUaFjOQWK/FuA3pptYmFRXX2mAn mWmwbHa1Gh10u0Ve0Ps30wpXSeUM/IIRwrCrcRUsEe7ZkTrtZBPNAOkHhk3lLkw4AgdLWoyKIVPs 3t3BrRte7OFrlG5YWpXGk5e0NFjKQwEHcm2BBgP+qPcxEQVfwP8iFj02KFRBrXC4F4t3zunOsqpr tJyWdFiRltDk3bUjowMWBgQ8rMUg2DbGZEjzY2+yS5tNTSZEdJU1hegx7wgVjBN/WeSVCwa3FM2o Ol5rWYuQEC6Oirr4GWlIM8lU4K6I8Ly8r4ace2HEXNnCDMCWF1/YLQKBdM0zriaiXpJS3CKaxUiV DquxrubXyiNGIKG3EER2MK7f5NOwXQ6/6Cdh4+qzJic0K1LchnTIBRDeDmmRSWoaLMbbVqOwSUi7 QTQvm9kHOKvRaniEdVfZZOCbO0vldN4W0sLA4GrHjCoVnCOxNIsYonfDFSnYKtBGB7duQW7d7TGt 7pNOYhosx/QKNYgbEtLg86b7ajLLty4NUandpIRPtNojeH3iV1hEbo/agR1ZLZ92S+d9yGlC+xVp yeAl8cR/rUW9T1Oa51artInKmyiElDEZ0oWTXLewYOqfSMjG5qav39BKTxEp0JaCMwMyKhVbPKyY MnY1dtBrtNoRBkfx/ywNH8Y6XWEQMRAuY2zPkAsu6cuMyMONrYtfWh1o9PTWarrQgs/k0yqNlRcC gzwqn3Rd7T3eB2tjCOZIEJkHtsfXarFLsP99LtExN7q331RazSebnDRYauCEvdcUrQaamszwwUF6 CCfYfolF1N/OhNmjrjVB926Inh+cG1CT6H3KocZdWspNjgwqKBy595onlU5u3QEfrXa2o3lri7pn vSEtCskKOmi0c+vGgYOWiO7CLEfTTwpi/qwdEqRqO61ygMNRGMv7Uwpj+9JfYZ/VU3E8Ejp4kFK2 GZlodFg2pHnJj/tzxtRESTTe6WkPswDAm1qMxDGFJRVJiSGSTuB9G25V2nno6IKMCrwWXOAAtrdv 7wTez2LAaVM32nv1UlGww7Ln04/fbN7wbcQV6xRi4hO+CKSY4fXuGeypq7lEpbEiLzoiVxj+7FIH AxnZa1Umfuta9wwiM2B1n3RS0mA5HAXqM/NDGryhBl9aTgvU/m0sfhTSIiEbvd981KMrQAq8AaMO GrAzPcoxY6blSJdWkcK6e3fKond3dOt+SXthEBrl+ojnpUfTYDHYF6jIZIwM6QSBbYHyNlonZSzp qBKLz/vVf/D+spzKEAe/txXOmDleq2mDXq1sW5E2IaBc5zMeKVnb5C/eJ5a3bjhYQRUWUVMOSWBW jNik0lI/SwXhjJq/GgdSv0mlp1RPICJMABmMn6LFjMAhuQpQGTbwq/PgQ95yjBoV0UD279m9bueH H6RDHu0VeG3KscUc7qmrPsdTVzuPMosQuUgfV+HlOBKIkBJT7gk0r1PbkhNKtwxp7/1//RC/mKUI uclJg9XOrTv6Ht+Uw+x5FVgUhLRIsHdVABet9BgmMEuu+sD4z7WUOJhQewYt7dfBUenlao+dVpNG B7duCLqfE52xuiUh4WmwdB7MSSENdjSve/91LRPdxOOucXvc1Qc11lXvDeSYcsT8+aYEUwUes7qS mmczjLu0nD5c9H1lZO7taz/XARYzHinMtv6CgTXXbj6tvB9jViaX1WeaPW5Ia0+td7QaiTGFjhE9 k54xRaza+qmaOAmT24lllCHNIGhId4nhcCztf+rpJ2u1ayS0blrw1E6Qsqe2k/jxbz+Et+ep2E5P 9LqrZ3vcd2/SrxFEjsJLtNA1ki1Yfe65LVpLGN0ypEOdDLM6kD47kS7BOnXBBVoFGTDTypAOuQ7B 90JaFKT8WEs9SrO3ZbkWIxJclS6rSuie18a6Wd9iYXU/XH/nZGfYjjAR7OfW7fe2Nj2lZaIdwrSc TzrhabC4jbdLeyefT4fJKCKxBKPJStkhsFVk2FlFJZURI3amnD699u2PBsiayZ7m++d8jsWeoGLR tdvpMH6Ab7ZmfATSo19ELPWLnLHbtZiViCuvVAEInwxpHcExwSna8yJT6NpQZmzTsIsuPQjbHF3R NTveeX2BaPX3hDv7LilltfS3HOypq7nWW19Dk8cEgYx+ecUILCJu+8RnJykLYt02bLG5sWpID9CB gRJCoXP4SVj0DyoSVvrmzVoblNMEh7Rdb3nAwNhKLfUoYv5dW7FQR1QMgJu1mDCw77Ls3i3BmKbF 5NDerVuSW3c4fHOrv8QibA7yDiQ4DRbj+9y6BZBbd7YiA63KFdjaXnwE74tZfEZV257knqbANPf1 A1JYWd1MFlZX9i0RDNgi9xqZ0Vekg67PDNCQtoCEnZ55szdqrUdhOL7QYjSOLSqrysgI1lYRAlQO 8c4wGHjokmWHay2t4dNu6o3fd68n0z4Y/ojiMzbzgsK+uqZLTG/jR42rVyd1In9/8MHdoNy3vV7f gY11NT9tvO+ub/RLBEEg+UZwNTqSTbu7iW+2vPATC902pJtEk/VUKQlMg8XBaBtES5aWKW8iuxi0 Q8hA+kQatj5ouEgFjdFyQmBmQHXSVt27L8WBWcTUKd2hg1s3kxmdqiYFWGqc8JolLA0Wv+5mNdg5 NaRBa1MgmPOVyEJCg0b5R61aYYTDkInffhInzX7vdhU9Vx2MNfdoju5EI5j5U/W7cAAQNTOFDhKp PH2iw2RaTC4rpLCYLx9Bo7tUi1nJqrXeJVh0uWfcJo2UGpfx4ix0nYBFp7Fv/oCB7zpGjow2GdC6 acEzX6NhG2EfZiKRX0iQP/TBtkOU+7aYf3ejfoEgCA1vaLAxxm7Uajie/KK4uFnLCaXbhrSo//t2 NL7e1WpEEpwGa58hHRBpZUirgDeMgWW3n6ZWw9qKXgqQTFpd2c93sIIrtJwQ9AqE1ejlfZyFB0bN AxkPndy6vaJLdzZCYzV1WwLTYBXmOVVbEtonL+EVlbIpKBNBXGWVP3eVVT3kKq2ytr0kzfFubp2F hXIltgQDVp7oPfnxogL/qOi56si2fYzK9V79Lp+7JmoANc4ipyVpj5QsbfpEH2uy7u3G4Co+dWrY IFaZjrjxKD9ena4nlpk8U0tpjeSss1s349sHnXF21MBhni8+ezDQ5LtQq8lkHfarN3o/9YxrdNfc K9zupBgABJENjBeDlT2ogjuHRUh4SIsJp9uGdBBmNZ9sYtJgFZZVjsPi0JAGW5run20tSFaKsBnG JVq0gk88UGM5X2ryYZaj9DIWdH9OKBKsu3cD58lx7+4YrfvldIsGn254+fYGLHwhLQoJCjqIDVfb /mi8Rj2VTiiduSZ4MMgKV1MdIT6WPaj5hj0v/QKP5Sg6pol1A4TBV1rqcYKLBVbbN4ABBaOOTkl6 xp5CCnhQi/vBTju4ocFCcNWehYFU2wI70P+kk3bz/PyI3x0HBF/teP21CSExOUgJG6UUP/J614/1 1Nf8V7x3r1+/RBBEGBhn0QJYbli17dOER+veS0IMaRzgWHWrTEgaLBuwfYNoCQsEotX0ILa9oGmV IJ8JGcPeG1ascnlrJSH4WvzKvdvaVgGAi3lZWcI77g5u3RLIrTsKarYc24BXtBqF7u+T1hHb2z5H BiQZ0u0I7kWVbLRWs4ZGd/UzMfQ1aqLvvKKSqlgmNYkk4SgYeQwWlifRsd1Nq34RsdwvGrAvCGo2 svLV+SrAVVcTHQ6HOSitJxGCAdEk65CJwN6r92dFo8eqDBAR2frW64/jgDNs7ulusgc/+5c+AWMa 62r/KXo4fzpBZArjG5aphdWpIa1rJMj7dbDEpJAQQ9pXX/sBFpaCVHEmExG5t82tG3vc9IrWrYLc MFB7cKySbgOGWL5PnrOwIKHRu8UDc1Q6NbXCaYVeDtk3ISuce+nk1i2byK3bCtJy9O5up8EqmNir GIveSkbD6iPvfTXrlUyEyHMOn4BtUEL2oqcbZsB/GxaWB5loTM9J1L78jEeFBushmCFj3D9rplm/ KK1/H8mSsuUoXRC//rVauOjaTdLgaT2JUDC9YhS2jW3BxBj28YOmnnmgVsMjzFe8a1bvyxKRONTg /h9eb8toT13N78XcastBFQmCwCZH2tRqdEQvESblPC0mhYQY0npF+IWQFgXGzulOGiztGn5iUJHQ 5DNZ1L1ZqaTACLpSWg6ChSObtIq+6AcWU6RUydjegE8JQwrr7t2MGYnN3dnOrRsvzhLt1kdEQZim 5ZXC7qbBMrjcN5FGbt2dsEFmBP2Jh6Z5c9Te2b+FNAswOMjhNH6qNaKHkNDFvtQIBAI8zaISx9Av MhiXiC1s6YwJ/not7k8q9g/HDefmEVoM4hwz9mtb7z7RvNrklkULVU7zQ0JqgpDwKgTE0R539c06 YwpBEDEw6rllfdEIiBjgEW2st5edPt5SCsN4SYghrUBL2uqKVLfSYDmddjXjaShZMvlyus3g4ReL 6bcxKdPKULOZLTHtB2aMhSY1EoivqeVxLCzmBJYX8ktuspTD1Art3bohSTnnshGdfu6zkBaFbqfB 2re1A8z0yh+fDjCQ++7hLMTrb/md2kuo1agwgJ86riuP6rpJJA+8BjH1iy0ikF4TmBJi6ReZw5kf i1daxrGyeNIqLJRxuT8jJzas6pxaKk1gwCdqEbjNvqPvcSdEbRdkIPBk0+ZN07WaCLaoSPeeuupi z7zadMmVThAZR5HD/kNVhLSuYVL8R4tJI2GGdFOLXISFtb3K3UqDxfcNomU6rkbJyVqwCEurAYOv 1Rbr9zm8Ox4GXRGanZUqzYYFWFFh/6KEuJPt59Yd8PqB3Lpjwlr0bhxUx50Gq6CkSkVWHRXS4Fvf fXPUthJCUzSj/Bg8w52C6WQTKkI7k/JnWrVCgWHnc7RMpBhX2S1DsIhlhVbCmqY0C/AY24Q33p+W s3ZkKhJknRY7wES7ic50g7E2Q7rfCScJbosaYD2wecHTatIguvt3dKSU8P+8XnO8inSv6wiCiINg YEMGP9ZqGOSeHX7/fK0kjcStSIciT78X0iITbxqsUGApuXf/kYSWlme1nEYwtfHdMtgZpZUhLebP asIv1aRVK/QqKLlthJYTRwzu3Rx4Yty727t1oyGfXtHUMwBhNXp//Gmw7Ky9W7d8RgjRY/s+0w01 ocUMY7ZWsxrvvFnz8Ppbz9bA2MWuGRXna41IISY4YuoTkT3pFq1YAovNsGcsbVdlE4XczdQAtXNe Yy4v11LagYbsWFXm9eq11nnI6AHBygiYrS2PtOzaUabV7rDOFHB2Y131DZQFhCC6T6EYrLxE1CRt WLDdvn/DWYcl3Ws5oSuJOKK1mE82vjRYTrPfVPzHoWV8Kd9rfPBvG4JyehGbC2FsLmOpgcX4nYQt 4RGCvdD8BBbWBlMSLkhE9PAObt3AyK07Rrw7PQ14LaxNwsSbBgsNIi3hKIeidbfHUVLxRywSHrMg HVETKNhJ/kSJoRoLGPwufsGt+VrLPRiesh7AAJnxfaKMsU/EM511UfP3Z8XFYz34Sx/QajvY0eNf /OQgraQNap6RMTmGAWsdMPXswbo6EnLLoue/xd9j5b3hwGdO3uv1+ib76quTln6HIHIJfuednHFW rtVwyIBp3qPlpJJQQxpMy/ukeaEjL/bIlgZP6yBD2l21f0izBmNijxbTic6zzBEwGCiX6ISignxh D/SyViPDoLDQUdgtd7JObt0tUhnyRAyIp+714YDTYsT12PdJF137k2FYqDQ6iGz0GjsWh+Tchl92 g6uorPI/ai+wrsoJGt3V76HB0qV7aRhGOwflVWqZSBUShmvJGkymXZ/IpIipT2RJ6BPTkQCIe7XY HmbY8pV3V1rhLPkRGsSsyHHIIUvtvXu7dHVYpGk+17p9+3e0GgdyM977F3ncNT8U8++O6f4hCCI8 44unqUWvoHdJBBpWT52wQstJJaGGtK95/ftYWHKHxT8c00BazSZi0RYR0i9Z2gUZKnDKmGcuheQ+ LaYNODiN7TsxUAZOwmEyBvduxqZpMT46uHXDK+TWHSfC2j5pZLTj+vLYVm3y89Xzr68RW6TyV4fk 3KSwpOJQV2nlr5x9+37GgN2gq3MKn4CfY7E7pFmAsZ/pSTMiVbAYV/QkS7s+MY5+ul8upF1bVTzh IzQW39LqPniwP00rpOkYyQxj+YCTTu2QRzocWxa/+AkWsU0C7UXCIm9L4HBPXfUCXUMQRAIIrkYz 9iuthkUK+XctJp2EGtJi/nyVE08FHYtOjGmwHNNvPxqLA0IarGuur1aNXFphBHgwt20scGGm3aCB sRgNaZAxrcJbxev3qmBfVnPGnsOn39pLyzHT3q1bUrTuuDFBWvVKAW7jsa1Kt3frFumVPz4JDCoq qbxSHc6yqmtcZRUlRWVVtxWVVv7FVVr1uKus6isb56vxnNyJJ6Y7rocZjZhbvUUC/EarVnBwO8uJ feRpg5Sx9YtMpl+fKETM38nhgH5azHa6cp88dkLD6r1BIdMCwUXRwLPOWQqcR01PKiV82Pztt5dq NRawC5S/9M6tPU88MGezriMIIkGMO+0atWg2IaSF5YuV25c9peWkk1jX7iCWV6RiS4NlGPsG0RLS chAtDBHzPt0AyDRMwB/bQEYCi3kCwQri/nt24iDZ6r6iAqc97xItx8T+bt0+Xyu5dcdJU33tGrwj vtBqZGJIg8VnVDmZhKlaNb1+yPaZ/kmMs0fVgY30Q3gG6hjAHMZYFTC4DF9PRBTZrMD36R41kI/F hetyV2l57FuLiPhgOq6JVSSkXZ/IbbEb0mYcE+uZyIpt5qN40b7V6l4Yl3CtltOCYdNLlhUOGmpp pXzXh++9ie3seK1aAscqG4RpnuGpq/m9QHQ1QRAJgj/2mMG5jLoaDVL8TVx5pVrYTQkJN6S9JnsB i4SnwWKwL1qvmZZpr/DayegznfvDA0bazb5jjxBL1G7la1ugxYTDhLTs3o0GfXzu3R2jdTeE0m8R cSOtxUrAE245DZbDkGfhP9j73rfI9Z7Yi4rwbAq4VavWYMbf+LRpMbfXmQ3DsX7qkRJiO88s/Vy7 AwEZU5+osDEzaf1iOiGunNAKgnVelWYykbmXu00+t5W360MisduzfNnhWraGhEU+E470zp1lMUYI QRCxMmHA5GuwYYmcBULCTrGHu7WWEhJuSCtXOyyWhrTIWE2DFVoxZHsbtt3Ny/ekZ2Mlg/u4Y4IX NKdVmo8gjAW0ZJWoyRjjxdvkUe7dLSEtMnjyz+LX3dxXq5bp4NYN8JgWiXiRFr1SYkmDJdu5dUN6 eqQkGJW79PtohPwYpKiUIP+Iskr59CYeFLhmP4IRcSXE4kky1lk48nYtE8mEqaY5FmTa9YnMELH2 idhk2exazHo8fvNfWOznScDGTXpl5fFa6VFGv7y0N96GN2k1Ik3ffL1ICnGKVqOBzbL8Y9CVOzT2 JQgiCfDHVuRhT3KnVsMimfxnKKNA6kiCazf+EKvu3RbTYDFbhwT/z6dbjsm9MMOM+Xt5vUbK3A9i ILbvJGNIQRMjYv69u9G4tbbvHiDPmedQbq+W2c+t2/SZ7HEtE3HilXwJFpYmP7AFijqZpmIpMAYX aBUCAX8uGNIbPO7q/zTWVd/tqautbXTX3IHyDI+75mSv96s+UprH43PxF3z4aB+exmSBmdgWWV85 5PIXRdNvjS+YEBELMfWLElj69YnYuWspBsx07NuTwvqzJ+xAk7LTKpBk/Hot9ij5NkcpDsKjRupW 7HjnDYcWo+GRprxStc3kyk0QyWV8f34zFoeEtDBg/9/a2nqX1lJGcgzpgOWAQ5bSYDG2z61byPQN MsTAiD2KsD0Q80x30pEytu/ELAcEiwsprEfvxkHY1Vq0Rsdo3Q00q9x98Bx68Uq8qtUoRN8nXXjd zBOwGBTSYHXTvDmrtZyTqKCOjXWz3m10V/+fF7aPwnN9B1Yn9RnMBHzu2eskg1qtWoAVMXteDO8n 4gEb19j6RRnjRG4KYM085u8UYEZOPZPNpqjFa9dh0gSv/bTgSlIPEpqHZWoQHhXR2rre9Hr3xuKI xJqAX57QOLeGJt4JIsmMXLSiH+PsF1oNC/b/dZ+ddVjKx/BJMaSbWr5+B4sdIS0y+AUiDqRDkZhZ sVb9TX6f1WBmKccM+GPPf8lsaTj7HuOKgISkulE0mS1q8sTSYAw77qn8u5UDtBqVjtG6Bbl1Jwhh cZ80EjUNFrOld/74nkSlAPO4a/4oAmIKqtbTQGUpvu17/ozFVyHNCmyao6RCnbvsR8qe2SMNMqb7 Eq2etJtcZtAacz/Nk9wvphtrz5iAz528X6t76T9+AI/JSyzRTFiy/AwsLKVa3LH0vdX4lETcR433 87Ne757jmu6rSUmOWoLIdVz5hlosiJYFobUlYP5FyyklKYZ0KA2WfFGrkYmSBqvQln8uFntnNF9T kZy1nHa08EDsAZB4ftoZ0jjaiuk74ft3aTEpiPvu2oN/xeoEit2RB5drOSKd3LpbTZpdThBCmJYn vKKlwWIS9nmkgJkLbt0x451X+ybewtegmNMuhuKpe31CQqVWLWFw/nd+7E05s5819bDtWrBK2vWJ vjhcu5tNb1L7xXRESKYGsh3OFWPsh1rsESTwG7UYFd/nn0VyHVX7of/sq591idpypusIgkgi415e djAW0T1KJMwNTealnqQY0iESkwaLt4vWLdM9d+y8e9QqfMa7czGQsd4Xm3SZNHBwbNm9mzGw5t7d 3q1bylcp72PiaJo7eyUW60JaFCKkwSq87rYxeIX2piHZ1uT9Bg1Gois87lkLJcB9Ws1ZvHXVqq14 JaRZYmLh5F4/1jKReJLePyQbZ75/7/YfqzTDg//MOUN6xZSxakX3Qa3u5bRxLy2PKZVUoggFGds3 ERuJ1i2bN8uAGc6Q9gmAaxvdNT+j/dAEkTpsNttsLPJDWhgk+E1/y5+0lnKSaEg3K0PamitZmDRY fOpUG1pFba8JydLakMb2Vf3er0OaRYxAGq6EsBi/k9g/h2TCafI1PYN3k8VAQux0/t3bB2slLB3c uhkjt+6EY20yDQc6YdNg8by8tkCDOEB7LuTtQoRDBMzfqyKk5S5+MH+ChWUXYewIf+26fuZQrRKJ xJQxrRJgJ5p2faJoLojxO8kNejyQc5im/zdqYKtVBTPshqWI2YmmwChUk+WW0pDtXrEs3ITPN9I0 i73u6oe1ThBECpjYsOpCbD4u0Wp4mHSvPOuwL7WWcpJmSHvcd2/Cge9HWo1IuDRYBaOOUSkI9vrF L/PNre6xE2UZCZ9ryRpeMx1dCmP6ToyJ2H5zHIj5dzeixfWcVqNhOPLtV2i5S/Z362bgI7fuBCOl xaCDEdJgYQPVbjVBkFt3FHzzZq3FE5/zuUyb3bM+xeLekGaJXmAYNVomEgj277H2D2nXJ0ouY/1O Se8T05VVZ0z6Atv0Oq0GYcCuH/7sUqvRsBMHY8qQtkTzhm+6mHxX6QZ9xzbOnfW+riAIIgWMfOzt Qibhb1qNRLMf/GoBocdI4or0/2/vTsCjqs4+gL/nzmSdoGjF4r6TFVxrrVZDUJRaP7UtFesKaNUu lCqLn7Ut1VZbw6JYW/cAYlUq4te6FIssqXu11CWZJKgoqBRFoJDMZJm553zvmXuIATKZO8lsmfx/ z3O55z0TYDLLvee99yxMuG1Id78Mlkd16dZNGd6tewehdJdW1wo9cZ+gk059MSbdDRmwve+aclLF 1b2bYnTv3nm27hf1hR9ThgQJBttW8M7dUIdulsGyxk3RF9FOcSJq53/vOVOGHkhMyBYRCNgzeOd+ 3gohLvJNmHaaibKP4GZJGgTa1Rreue5Jwol35p0Tc604Z54WA3plgRB1/Jp3QSeKGDx4kC+lS2Ed +mzdXqSEnmgsJjsYsGUoPNSEEUrRg4FPO0ahbQCQekVDBv+Mz1mHmTA6RXc3VQ7/2ERpkdREWpF0 O066+2WwhPjibpSd2d26u3jb7F2xvR5XaxumEmeX8Tyn953ljpKvVdIzvHP7f51adNFP9jfl3ewy W/fjpggJFOlFQOoFE8aw+zhpn8/Sa0d7dZkbNSucfw9iESRfMsUBTS6avUVJirlkRhfCIvH7yJAi SBh+H/SQnHgutmbcOdGj5B6m6FZc7YBsoxu2ipQe29hJEV1r3XRTcm/edOHzec/ig6GrizKtGz5e Z4paiM83k1rmVV8pn5nbbuoAIEXKVzQOEyRcTBqqttsicKsJ0iapB7XWD//9Cu9cTbjBT2SnhnT+ hCnlvNsx8cPG4MJZr5tyRguRjOt5ekTOYFPMGHzCc/+clEpZlyeTsLvt3m1RXn633bp26dYthS3R rTtZlOtJB7tZBkt0jo/mtwl3WV0KbgnU8W5Ajs/cVbB13QPcKP63CWMTNKLwkBN+aCJIGBXHeVFk 3DlRCmtPU3RHpu68mKnUNlHNu867uYJoWFnlBV2O6UmmxNmmFFPHps//Y4qf20RnchJ9l4kBIIX0 xTZhiQe42PMEY5oS1Q2Vx8W/WlKCJTWRlitW6MlenneiGHZZBitHWF9MMkTq6f4yU2JH4GO9tqDr pRGEUBnXaOATnuvnpEikdBZlJVUcs3ercaa4s51m66YXmx+as+MkCgkWIpfDO1jXZbCsceN0V8qz nIjfpXAIibRLegko3m1wooFNT06nlNITj7m+sCAE3eRmskJwj98DfVHdrQw8J8ZznlYtgfX/0mP0 BzT/ucXN3Hb7hQkNa4opJB2f4M8wxZjsYGAtv29v2RT+SrCmOp4Z/wEggcoqL/wxf3lPNWFPNmwJ td9hymmVgm42rhvSOy+Dpbp066Z+063babi57s7KPy9oH1PMJLuNV48mTPZKU0yJ4NbmZ3VDxYQx iK/5xl97sAk67dStmwjdupOobd7set65m7W3yzJYvoKDq3gX6U7J79HqloVz0zoGpr/h1wxLuRmB +TNf5Exu1yV5ejK4MC/nd6YMCWBL6To5URl4ThRkuT4nKhL/MDcRBryGVYtqePeaEzFuIJes9O/o DZY0pbV1Jfx/uZ6F37PPvn8I2OKUYM0cd0s2AkDCFa+sP4K/t+66akv6+YbRI1IyrDSWpCfSSkk9 QZC7uwFmGazI3QBBX43U6TmLAra7u9qZQgnXkyJZgg4yxYxgJnjyOVFMn3QsuF3fgU8Z526beNqE sXD7J2en7t27duum9jZ0604y/vK7+j6IrstgWV9cSBOqn0w0mEHCZI+XUp1qh+1ZpmpAUySv5z9d j7Hnz+LlvsumnmzC7KCUu/NwEph15buOQ42KX/uh1leuybAJx1Q85+llZj/gyRkz9CJgP+Ji52Rz HstzgykmjSW9bu5o7RDYuLXx9VTN9QIAu9NdunMs74NcjJ1/KPq3/x+PLTBR2iU9kW6ZN/sT/q1d TbyxYxksX27OObzb8dyWmclK+g0pwjrRc9doUXSgKWWE3AKP++ej6K/pWCtTKdt1925L7dK9e+fZ ul9qeeROdIFNNmXHtQyWZVn6/dHHAIfCLNTx0ss/6TuxkeWwwJyH6BYnckUIr/V7RcJjYugrpdxe ALXyhxceYMoZQSj3F7xlh40Lf134Rxb/i3edS9Hxwf28klX1R5swOSyx40aMC6pBJ/wmAIA0iHTp Jqp0op4pUtdm0nc2BV279S8t3E04tGMZLEFfTEjRDxvRpnuQq8lGlBCHmmJG8BLFnm7esCUtNsWU CoqtOjFrdqIYhPhK4eXTO3+nnbt1K3TrToFgOLycdyEnisGib/gum3IMl3Z0yV8feGi2q/XoITkK J0w+omDitJLulijsTwKfdtzOO9cXFrjBf5yw6EoTQh/ZQrg+Xwhb6J5DmcPleVoRrQ4+PHutCcFo Cwdu5N2Oi9bCK7y7jJ1OLP7unmCKLoiU9qoDgJ2VrqgbwV/a20zYIz7GLqofWVJrwoyQmkTadnlH ip+PryD3PN6PdkKSgY6Q26vYGUUSPWaKPRKKykwxIwjh+vl80rZwVlom5ZA1NW3kvruv8AhnTend unUrzNadCnLh3O28c7kkkxijunTr5vf5qXT0egCHNXFivkfk+b0kGgp9ef16NuvIUjZSXmtCt+Jo kENP2gLr9NwhumdATMLj0at2ZA6X52ml1MOmCF28d/px25RUk0yofau8trHClBPKun+1HhZQ6kSx KVLxLM0GAAl04NOrCz2enEe5mO/U9CgQpo6pppwxUpJIt/oDemZn3ZiOzRK/4j8LI2VFr8k/3d4v J81ptUmfUGPfhRN0qPWtKzNn3UxBrk5uStH8dM6kzic/1927leUk0rt0637ZdPeEVJDkdhmso/gN +r4pM4lukmlUIL+kE0k9g7pOEtwdwzNY8/xZT/Oxy/VM8pA4ZiJOV+Pa+BiQMYl00YQpB/AT2suE PWlvDXYgkY6ivqpkCX/3njQhtz1FUu5KH3VE/lG8ixyzXFEuJ8MEgITbc5BvLu/cXagk9Ru9Rr0J M0ZKEmn5+j06oXQ7YdgXY6NE/51kSC6o/ox3TzhRj0TB4D1GmHImcDN2KazC6n5TTovgZyE9gZWr Zca4UXZcwSU/PWqnbt1SpaVb+kDFB4B4kpcdx4DtgeDHWIokjfg70zlpj0Wi3yfSmq3kT3nX4UQD iBBp79khydbnjc6Jp6JTenhHRhBSuB3P+4RcNHeTKUM3VJj0OMj/6jKfl79btqrpeF1OJI/wHGmK 7kjC8pcAaVC+qnEcHwfcDp/yN2ySc0w5o6QkkTbc3pHqFFKyX08ypGxytcaZpbxfN8W0ssZP+hLv Yl8ZUurxwMKZrmZgTRbdTVMp+osJY/Lk5k7j3Rfduu0ONxc5IEE6Hpql11WNtwfAc3LRooGX8GQS 0bmWN0khsyKRbp0/aw1nlPoqOKSYmT/k/5yoJ+L4zhn800x5vriY1KNweLYpQRT+M4o3KFL6XKwJ bkT/1pQTRljqcFN0xfZIXPwASLGK5xuOEkLca8JYlJLqB3JsWUa2B1OWSMs2GW8i/b5Zg7bfallQ rddPXOFE0SmLTjPFtCoUeafwjs9tPZIhIRN+8usNfqKuu3ebq147frdXsC5xaulxzkrFdzFNSkK3 7jSyxl2zJ+86l4CyZHbckdaCW7f8mj+PuBOVBnwg0OePWHfH8/J9njhmXk4eQSLmhW7+ZZ5tfmjO ahNCDxqqyh7kD8FKXeZMenTZyqYzIw8kiqL9TckVizyRO+QAkBr7L3vbR15L38zSbYzYlJpfX1Xy DxNlnJQl0oFHZn3EuzonciFL1o6VKvxLU4xKkDpNT+pjwrQRwuq8+9SDP+uldUw5rQLBdcv4pLnV hLF0XiDgRg+6daeDUvEk0uHWVvtZU4Y08BUW6YkfO9fzlVnStVuTTz7QLEj+rwkhhVrmzdTLIcU8 v1uKEptg9YJ1yY/02OhYCb3iY1vM8zw49EXVsB3WF7Yj6zZbgn6n15DV5cQQQ03BFUUB1+vLA0Df 7Z2bex+3yIebMJaNLcHwFFPOSKns2q0TGNfjJG0hsiKRDsyb8xL/5jG6somiQrV3WhsNFuP353wT RtNmU/gGU0473e1XCffduw2l2iS6dadB0LL1PAlhJ4rpJblo9hZThjRQwtppDXZb2FmTSGuBBXMW 8knpFRMOACrWXeCU4URKn0d6nIxTCPq2KaaNL7dQr2ffeTGpe+phc3EAXGo8vWKtJHIuZAk6tvS0 cRdHyokgaG9TckW2hjF8CCBFylc1Tucv6UUmjImPE5M+PLvC7Q2ztEhpIi1t1107t7R9+MaLptzv 2ba4jhtsrSbslhBW50RY6VBw2ZSTBfXcJYpbYbeZMW4ZQ0j3s3dHKHrV9I6AFJM1c3QXOleJCx88 0a07jfRScXw82KmHiqc9e+5Ia5HhBtL+iS46NZAqrQvmNPDu904UVXH++OnpnYhTRVZ66Mk21daO ng290LjqsT/yLrIerBDitrK/NiVq9ZK4/p1tBUX4/gOkQMXKhrP5u36rCd1Y4q8szvgepClNpNva 1unkuNmJeqDU3+SKFW7vXGW84ILqD0jQDBNGM9a6eNo+ppxyliWuNsVo/MFP2zNibHRXgfpmfZfT 9Z1LSepxU4R0cLn0kArbSKTTSHhJrxntcSJHq92SVYm01rJg9huKVI0JIYUCgeAMPh58YMJu5Qi6 xhRTznfR1IM4wzvbhN1Skq5veeTODSaEOMgZM2RIhq/gYoDbR/uJPRPTPV4oFdckdYUU8poiACRJ ZN14S+j1ondqV/Tgs/aO9h+YckZL7R1pZwbemJNvScqObt1dBQLr9LTtLzhRt/J9ea6ngU8o6+Jr v8y7nu6Id1A4fKmeKdvEGUMvrdZlbcpYFLVj2au0cjNOWlFD8KHZ75kIUkxf0BMikkh3pejx+2Jf BO2HgoGOn/EOEw6lmFx0V4skNZ6L0ZfDEupSM+ldyok8S19cjppkKaJngw/Nus+E0AtNVeXvk5SR WbyFEpNLa+tKIg/0hRBxtmtz0j4/DUA2O2rZ2/vyF/Mp3vYwVS7Iq98dPUIvI5zxUppIa0rGvCPV 0Rpuj3eG74wnFy2yVahdjwv43KnpjpiSjkaDL8+rx6vlOdHuFKmpmTwjqSDbZfdu9Rq6dadX4KHZ b8aaLVkJdOtOJ1+uuJm/VUUm3KFZMlPOKnrtXyXVr0wIKRSYN/MfpBR/3qIRRYW+QdNNkDLWuMlD hKBJJuzO+mCgfbweHmBi6CX/6eX38FH/OT6R51gq505T3QfxzQWQLz1puVADMBAMrfUX5eXmPiOI DjVVbsyvqyx1sUxiZkh9Im3HuiOlauXCuVnXhVDTSy7ZNukJfKJ1W9+HGw0pHW9VOGHyEdxYidp9 gk9JD7XUzIw1li2tAuv+rXs59HCBwiFJoFt3mkUanoKeM2G3VFgikU4T3/hpX+f3p7thHll5TN4h WN+sx2v6nSg7KSUyMukLLJj9G95FnTRSkPhp0aWTDzRhSvgK837Ou+7vnihq5RdyrL4AY2qgD/Q5 IUShK/l13aqXw6pY1XCBeah3lOhxPppdCaXimpwMANyx7l+dsw9Z3O4WJ5gqN96T20jPXdJvpDyR DiycuY53URssfLLP6kZ0cEG1Tvp27TbZiRsN1w26bOrRJkwqPVO3R+Tdw8Vcp2Y3LwQ/a7/KlDOW Hk+vlFpiwmgUyRC6dWcA1fM46c9aH57zqilDCg2a+OOhljOGqbvzQlYn0nqIiC1psgkhhXRPh8DW LZdychqt11Mh5eTezaerziUMk6lowpQT+UQc7Rytu2WMb6mpft3EkABNlcM/lop+FAmENffw2rcG R8q9IVRkWS23lEccYIoAkCB6SbuyYYXz+As5xlS50WGHwxf5zy3uV8PIUp5IG1HvSquwesoUs1Zz TfX9nNbpcXndySWvtSgVXbx9l0/VXbrPcKJdKHo70BE4LxPHRXdHUszZu/8ZmH/7elOGNGoNBZbx rtteGZxkP6Mb1iaEFHHmSSj4Oxej3PlTWZ1Ia8H51XriwlgX5CAJ9LrewfaQntir0anZmSBxTsH4 qdeaMGms8ZO+JISlLyZ1Ozaaj0+TA/Oq41spAlzxVxXr130+b0MLKe93kcpeUErE1VNASHWQKQJA gpSNvHAuf7viWtZOKfWLhtPL+91FyrQk0nbUcdLqLXPHOus1z6v+LSeruvtYd4p9vj2WWOOmxDX7 ZDx8E6dfxK2TKGPT+H0Itp8hH/5DRq/d1lVb8KNVvIs6MYFUmK07U5jP1WtOtAuh0K07xXwTp5zq y8t5g1/84aZqdyq7lr6KxqbwFD4ux9U1FBJD/un2TykcHsWvv14aazfcWKkuGj8t1nJUvWZdPt3n swqe5O/B4aaqKz3w9tqWedV3mRiS4HOyJ/HrvIbfg++Xrqo/xVTHRYjo7YDuCIuKTREAEqC8tlEP 1/mxE7nD3/tnG2oXzTJhv5KWRLptU7uevXq37jcqC2fr7gkn07coGVneo7u7c6N8hZ6lnEwnfPxO 0fjpV/Mb/xAXu3v/awMdwar+Nv5LT+bGH6AnTLgrxa8wunVnku5m7+YEJmgLfbcaUqDg0mllgyZM e9gij17LtecxqCK7u3bvoNfJV4KqTQgp1vzQnP8EVOupfDB42VR15RGWeHTQxGkTTZwweqZ6n0fp Hhn8f+8mxMemK1pqqu8wMSTJxsqyFm5Q67tYYY/w3mst9kcbdhadpPhuxihRZkoA0EflKxt/IUjc aEK31pGtLtNL4pm4X0lLIq27C/PBcvdlsOyBt3Zsy/zqe20l9RiC3SfLEnQaJ9Nv+CZMO83U9Inu Ll40YfoDwiI9LrqbtdzUPYFP28/qT3eiu7IFdd/lTqnXB0pPh/6Cv/+79UpRQi2XC6rjGt8G7lnj xnkGXXbdcXw8mcLJyCveHFFHItL1KubYUzUAunbvENy8XSfS2Xe8EPprl/nk/N9vDnzaMUopetBU deXlX+TBognT7rUunRzHUirRFY6fWuXLE7pHxsmmqgv1qU10ZvO86nmmApLMX1nM70VkvoLy0iFW L2Zsl++bgjuCjrUWL3a7ti0ARFGxsukGYelVP+LSbofD360fVbLZxP2O8E2Y+mtT3g23rvbhP/Ud 0wg+sc0joT4x4W5kWC5wu/5r0cTpP+R//w8m1D4JzJ91kJ7B0cQxcYPwWiEo6h1bQUKvyzzUiaLj //A5/rOHfvniPy011XpW16ThBu5+yuut4deku4H53I5Vj4WkuLVtQXWdqXNNd1kr9KiJ/G/fyL+L XjN6V1v4Vf9Bfx/7pRMFn++Qj7m463s+vbmmeqYpp02sz6vGn1k9udu+ThTTLP5gtJlyt+wQPdq6 cGbUyf0KL58+yvKoKhPuhp/Pt3m344r9+/z/6XFs3eKfXR8Z/++CnujON37Khq6fR6XU1S3zZrpe l3XQxOuOUeT5jgl3I5QYxk8q9gywehZeoWabqFu2bT/SumBOt11OdyiaMOUAElbn8XJX/Pro9z7q RIO7+JBf64dNuTe8/P/l87+hk419+bt/CD+DYVyOusxdDHfwe+tqjConOVfxLxt13CE/r+/x7ggn Ij8/x6jjkoVS7zbPm6V7z6SU7kLMDYJuhoME92uuuWujCZLKuuRHexXmFl5nwm7xa6mXKfupE8Wg 6G3+nPd4sVraYqWZEDMj8DHze5YQujt1d8fNjUrJ3wSlNb83F+DyJ04ZnqM8P+cX8bsc8ldkZ9wu eEZQ8MpUvd+ws4pVjTUkxPeUrY7mRvYaUx1T6bK3D/Pk5q01oSu2HTq6YVTF2yYEgDiVr2r8pRDi JhO6pqS6qr6qxFW7MVMJbvQk7Cq1TerMYM1MV10zuQF/mMdDXQ9293JDLWojtDuDJk7XSfuOBlnS 8Av0JifSx5owqbjhcDE3HH7LxSgNUfUqv21LZFi+1NreUi8X3bPNPNBJJyn5F117qMjxnKATc07e vsXV3c2CGebfbV4w0H5jtizlMWjCtLv45OvM/ulQNoUP1102TZw2/Hl9l3dHOlFqKGV/u2Xe7CdN uJuiidNn8GckUWvovsTf4a+bckxFE6Yv4M/mZSZUFA4foLt2mjgm3/jpl1gWLTRhUilJ57fMr466 RI/Gx9Lj+USi76ZkHaXUzS3zZs4wYY8GTZj+MqclXzNhnyhFf2uZV60noUo5/r4u590oJ9ohdYl0 N+fIpOPzwU18rsuoNbWty6fvW2jR78yxors7h9v4c7JECfq7lHJ1e+tH70eG+uzCGvfjosL8wnJh qUr+fJ7H51H9Gd0tgWbrJNH/BmqqHzMxpMEhi18tKBqy14uC1H/9VWVnuL3Jomd3L1vZsIWL7mf+ VjS5bmRxAtawBhh4ymsbbxEkok2gHBV/of9YX1nctb3eL6Wla7cWXFD9Ae+anIjZWDtWC8yb+acA fT6MGwaT+GPWTSNKnMR/VFte6yWfb4+tnIxs4AZfPW+vcwP2rUETp73vGz+12ZPred8StIgbHxP4 53c9oeiu9fPDpIZzo+mqbFoPkxtAu95VfyMTkmjYnaIu46SVej2eJBpSi48XA6Zr9w4hO9K9NNqa /5AickH1Zy3zqieGlH00nxd174QO55FOe+rzHDdmHvVaVpOv8JBmfR50zod8XuTzY9HE6Z/4fIXb hYdeJSFu4/Oo7sa9axK9hj/nPwp82l6MJDr91o09qdWWbefy2zSsZGXD5aY6JpNw/8uJ3FGCzjRF AHBJL3FVUdt0V2+SaFbbsCbgrjdVhhO+y66LZ6HsHgVleI1cONd1g6twwuQjLOndS5eDbR+/LRct 2vUE2SPdNctr97qromu2tII9dY9NFn1lNf+y60Z6LHGBInEun/X3Nw/1Roi3WqXkkqBq/7Meh+ZU Zxd9N75w/NSPOl8rpa5vnjczIyYPyr98eoWX7HwTpkTQo96TNXP+a8LdFF30k/0pJ6cvn6tOtsdq aa2Z2e3yNd3Rs9IX5lO5LitpbYp3HLteqqZQ5R5mwqSK9Tpq1nnXFBYO9mXlxDVB8qzXCY0Je1Qw cVqJx5a6y3Gf2ba9rfXhO3RPjrTghOxOPk1OMiFLYdfub07OK9zHG30m9WQIhTa0PHLnBhNlJGvc 5CGFvtwLufGmh53omZ1zIg/0AmdcG/hc8ZRN9Fjb/Fm18Qwtg9Qor22sEEosCbW1ntI05hhXF/0r VjXOICHi6VnR9jnZQ/RkZyYGgB5Y96/OKR1WWMPH4UtMVTzWhlpbT3L7fc50QimcN/qLgvFTh1lk nSgsGsEnf92l/WBuCuzNb6MeB6kvKNj8bgb5sS1c/ymXP+AEvEHZ9GYb0WsDZSKnQROmzSJBV+uy 3SGPDj48O6XdIwEgO+hxyr5c31t8PI1c8A3Y4gi3FxQg+fTFq/y9ir4qLOtYQaqUz32H8flwP27W 7CVE5Jyo14Pu4PdvO2fNn3NytZ7bPGv5Z+vDQvyzff7sJiTPma9sVdPxlqDv1VUWTzVVPSpf1Vgp hNBLYrqn6JK6kcV/MhEARDG01l+0D3n0Kjnx9+RQtNUWoZMbKitc33TJdEikAQAAACBjla9sPCTQ Gt7+4dkVMVcV0XfLyob59AUv9+Okif7OifpZpgwA3Sh/rnE/kU9/5fQx/t7MikK2ssc0VJVlzISW iYBEGgAAAACyRkVtk15h4kInckVKSWX+quIv5u4BgE5ly5uGW156mosHOzVx4XRTTagfWbLAxFkj bZONAQAAAAAkGifFUZdqjMISlsqKyY8AEq28tvEcy6te5GJvkmidRd+QjUm0hkQaAAAAALJG42Zb rwoR16SqgsRlZc83JWTyTYBsUb6qcTp/N/7C3xA9H1PcFKm5nETfZsKsg0QaAAAAALKGHFumV4GZ 70SuFVo55Gq9fIBst/+yt316iISILBnYu3xRKVrYsGrRdSbMShgjDQAAAABZZVit/8hc8ugxz/Ek AeFwKDyi8YzyBhMDDDiR747yLCFBfVmC8Qk/bbxQVlaGTZyVcEcaAAAAALLKmsqy93j3f07kmteb 47nLsixhYoABpay2aWwued7oUxKt6G/+TfZF2Z5Ea0ikAQAAACDrSKLfmmIcxKiy5Q3jTQAwIBQv XZpXUdt0FyeGj3O4p1MbP6VoWfPnW79jhldkPXTtBgAAAICsVF7b9KQgOt+Ebm0Jy7YRjVVHf2Ji gKxVvMJfluPxPMLFo52a3tFJdMvnW89bN/akVlOV9XBHGgAAAACykh0K/4x38XYx3dsr8hZaN92E djJkLT2EoXxV4w85iX6dQyTRvYA70gAAAACQtcprG+cKEj8xoXuKbqwbWXyriQCyRnHtOwfmUO6D XDzTqekL9ddQ64cXNI0Z024qBgxcaQMAAACArBVu3f4L3m1wojgIurlsVdNZJgLICmW1TeM5iX6H iwlIoukx/5rg2IGYRGu4Iw0AAAAAWa2ituF8IutJE7qnaGuHsE80s4AD9FtHLvcfnO+17uX0b4yp 6qv7/Jve+aEcO9Y28YCDRBoAAAAAsl5FbdN83l3uRHFQ9G57qP3r744e8ZmpAeg3rMWLPaVDKiYJ JW4mQYNMdV/dXFdZPMOUBywk0gAAAACQ9YqX/nOPnPw99Rq5R5mqOKg35DYxyn9ucbOpAMh4JSv9 J3qF5x7+zB9rqvrKJikn1VWV3m3iAQ2JNAAAAAAMCGXLm4ZbXnqFiz6nJh7qpVDr9rObxpy43VQA ZKTipW8O8RYU3CqIJnKYqDmxAqTkxXUjS/9i4gEPiTQAAAAADBjltY0XChJ63VzOM+LDreZXW6nt G2srj/6vqQLIGNb9q3PKjvRdw5/sm3jby1QnwgZlq/+pH1Wy2sTAkEgDAAAAwIBSsarpZ5xo3GLC ePkl0Tf9lcUfmhgg7cprG88RRDM5vSsxVYnyZkd7+Nw1Z5Z/ZGIwkEgDAAAAwIDDyfR9nEx/34Tx 2ki2vKBuVOkLJgZIC06gTxIkfsfFSqcmgZR6fEuoY8KG0SMCpga6QCINAAAAAAOOM5vx8EcE0QWm Kl5h3m7wV5XOllKiQQ0pVbGqoVyR9Wsh6HwO4x6mEAN/oNWMhqqyW/DZjg6JNAAAAAAMSJExpcN8 S7h4jlPTC4qeCrW1XtE05phNpgYgacpXNA4THprBadyFHCZqIrEvKNpKSl5SV1X6rKmBKJBIAwAA AMCAVbx0aV5OwaF/5mbxuaaqN3RX74l1o0r/ZmKAhCqtrSvxUM4NXLyIN2+kMtEU/Ttsh8Y2nl6x 1tRAD5BIAwAAAMCApu9Mlw7zLRRE40xVb+hG9f2h1m3TsEQWJEr5isbjyCOu58/mWA4Tfwfa4A/v gy2btk5aN/akVlMFMSCRBgAAAIABT4+ZLhtS8QduHl9tqnprvZT0Y39V8VMmBoiLZVmiZHnDaGHR NE6gzzDVSaK2Symu4c/ro6YCXEIiDQAAAABglNc2/lyQuJmLfZzASf1VkpiMZbLArUMWv1pQNGTw xfzRm8wfvgpTnTxKvR5S9veaqsrfNzUQByTSAAAAAABdVKxqupjT6Ae4mO/U9JKiViXU7M0kb9tY WdZiagF2UrK87nCP13u1IHEFh19yapPK5u0W/5rAb+T3jws5VRAvJNIAAAAAALuoWNXwVRKWntF7 f6emTzZKTlwaN9n3ybFlHaYOBjCrttZbRvuew+nY1bydqaucR5JurZR0qb+q+GUTQy8hkQYAAAAA 6EbZ8037WzlKz+h9iqnqE251f0hS3dqwWS5AQj0wDft7/UG5ed4r+NNwJX+uDjDVqaCzvrs3k309 ekckBhJpAAAAAIAonBm9C28VJKZw2Mdx050+VqRmh1u312CG7+x34NOrCwcPKvg2f5ou5fB03jyR B1JnrSS6wl9ZvMrEkABIpAEAAAAAYihb2fQ/lhUZN72vU5MIarsiUROW4bsw4VN20TNvF6+sO8Ui z+WC1AWcdu1hHkqlsCJ1x9aOjl9tGD0iYOogQZBIAwAAAAC4cOSKui/neXIeFETfNFWJInl7npR8 MNS27i9NY8a0O9XQ3zjrPtN3BAm9JvkRTm0aKPV6WMirGivL3jQ1kGBIpAEAAAAAXNJ3GsuWN4wn i2ZxuLdTm0CKtiqhFkllP9w0avjLUko01jNcZ/KsxHdJ0FGmOj348yMF/bJx0zt3y7Fj9ezckCRI pAEAAAAA4nR4rX9oAXnmCqILTFUy6LHUS4StFvu31L+MxCgz6HHzJcN8p3AidbYQ4jtcdbjzSFrp Ky414dbWnzWNOWaTqYMkQiINAAAAANBLeuy0sOhOTqgPNVXJ8jlvz5KSzygpltePKtnsVEMq6G79 uZ6cb/D7rLezuGpP55GM8KIdDl/XcHr56yaGFEAiDQAAAADQB3pW5j0HFd4oSEzlMNepTSp9Z/pf vK2wya7dyokUljRKrMNra/Pz5JCTLcs6XSgaTUIcz9WpWuvZLT0b9/WNVaVPYAhA6iGRBgAAAABI gJLn60u9OZ7buYmt71imjqKQEjqxVi8qEq9J2fZKY9XRn5hHwQV9MWSQL/8kj+U5jV/HU0mJr5Gg AvNwZlG0SQl1a7j1w7sxMV36IJEGAAAAAEigipUNZ5OwZnEiVmqq0mEDZ1xvcFNf37n+V7st31k7 uuIj3Lkksm66ySoe+Z1hQuUcZwn6Gr9OJ3HifDS/XznmRzJVi17OKty6fSbWH08/JNIAAAAAAAlm 1dZ6S9WXrxJC/ILDoU5tuilOvkQdF+pIUb0U9Lbd2lqfzZNTDa31F+1NnhJB6hgOh/Pvf4xQdCwn zYOcn+gXApxA/0FScGZD5XF6rDxkACTSAAAAAABJsv+yt3175eZea8ZPZ9IEVV1t44zgfUG0hstr OD94XynxnuhQHzS8uuhTOWOGXuc6YxUvXZpHeQcd6CHvEWTRME6aj+LfZZgiwQk0Hcw/kmljm90K 8HZPe0d79bujR3zmVEGmQCINAAAAAJBkh/zdv3dRnsUJNf2Em+B7mOr+QI/B/YQzho/5uW/g/Uah aBOR/FQqS9/J1ndIN7dZ9raO5rbtH59zXFD/pb7Sk30RDRmcR3KwkDl6ve59hKX2FUrsS4L243h/ 3g7g7SDe9B3//posd0fPyH6XstXvMTt75kIiDQAAAACQIl8k1GISh5l6h7r3FIU40dV3UnVCHeRM o433HZyEh3mvN3132+J6i+v03stxLifnefz39ORehbwV6TreBhalPuA/5srtVo3/3OJmUwsZCok0 AAAAAECKHbl89Z553sIfcEI9mcMMGUMNaaHoFSJ5h//z+ifk2LF6aTPoB5BIAwAAAACkie7CnK+G XmYR/ZTSO8s3pJKiViXUo0qJP/pHFuuZ1aGfQSINAAAAAJBmlmWJkuUNoy2LdJfvs3VV5AHINk28 PaBsNQ/jn/s3JNIAAAAAABmkeGX9ETmW90ouTuDty5FK6M9aeHtCSVXTcHrZC1jLOzsgkQYAAAAA yEDWYn9u2T7ifBKCE2oxmqs8ziPQD+ixzss51/rTZiGXbKws08k0ZBEk0gAAAAAAGa5k5VsHeKy8 SwWJSzksc2ohw+jM6jXeLVIh8Wf/GcUbTD1kISTSAAAAAAD9SEmt/xgPWd/lpPoCDo90aiFNbM6m XuLk+cn2sFzy3ull6009ZDkk0gAAAAAA/VTF8oZjyWudx0W9HROphORS1EyClpGSz7SHQk+/O3rE Z+YRGECQSAMAAAAAZIHylY2HcIL3TSHENzis4s0XeQD6ihMm9Q6nTstsaT/btJlelGPLOsxjMEAh kQYAAAAAyDLFS5fm5RQcciqRdTq39kcKohO42us8CjHoBKmBdy+QUitCbe0rm8Ycs8l5CMCBRBoA AAAAIMsVL/3nHjl5g76uLPE1TqpP5jTgRK4uch4d8IK8rVakXiVJr3SEO15Ed22IBYk0AAAAAMAA Yy1e7Cneu6TcY3lOUMI6PnLHWtFwElRgfiQ7OeOb3+LSm5w4v2WTfGMNbaqTlZVh5wcA3EEiDQAA AAAAkeS6dO+KIzjRrNCbEFTM1cOcTewR+aH+Q99Rfo+3dznf8XPSUycty99YVbpOSokECPoMiTQA AAAAAPToyBV1X87zeA/j4qF6EyQO5P1+nEnsz/uhgjfe5/OWbJK3rfz//of3G4nURlL0HyXEen5k vbTs9aq1ZW3TmBO3R34aIEmQSAMAAAAAQJ8d+PTqwvyC/H28Xtrbsj17kaBBvOlx2EVCqEJOeHM5 zhVK5Cr+w/lbhqIQP9bB+w5OivWM2C1Cqu2KRAsnLM0cb5ae4JamTWu3yrFj7cjfAUgbov8HQhyS Z2w22TwAAAAASUVORK5CYIJ= ------=_NextPart_01DC5369.B776F410 Content-Location: file:///C:/A4623221/file8785_arquivos/image003.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAZMAAACNCAYAAAByt5c+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz AAAuLAAALiwBDmuRbAAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAACAASURB VHic7d15XE35/wfw1y23vW4qtEi0KGkIISmMpV9RYSwzGMYydgZj7MYua5YZe5iGLA01tBKyl0KG SpFSGbTRbd/v/f3Rt0bq3nvuvedu+Twfjx7GPZ9zPm8mvc85n8/n/WFwuVx8isFguAPwANAbQDcA qiAIgiC+dBUAngF4BCCUy+VGfHqQUZ9MGAyGHoDfAUyUdoQEQRCEwjkLYCGXy/0I/C+Z/C+RPAHQ QaahEQRBEIokC0APLpf7sT6ZnAfwbf1RbW1t9OnXB6ZmHcBs1Up2YRIEQRByobqmBlkZmYiNjq0t LS1V/uRQAJfL/Y4BwBNAcP2nNrY2+HnFUui21pV6sARBEIR8YxewsWeHD1Kep3z6sZcSAPf632lq amLxsiUkkRAEQRDN0m2ti8XLlkBDQ4PzycfuSgAc6n/n0Lc39PT1pB8dQRAEoTD09PXQ27GP0icf OSihbvovAKCTRSfpR0UQBEEonM/yRTclfLKOhAy2EwRBEFR8li9UlXg1JAiCIAiqSDIhCIIgxEbe axFEC1dRUYFCduH/vtgoLCyq+5VdCC6XCx0WC7q6LOjossBiscDSrfvS0NCQdeiEAiHJhCBamLzc PMQ/ikf8w8dITkpGRUWFSNdhMpmwsLJAT4de6Nm7JzqYkQIZBG9fZDLhcDgoLioGm81GUWEh2AX/ 3bWx2YWorq763x2absNdGkuXBV1dXeiwdKCqSmpfEvKDy+Xi5YuXiI97jMcPHyMrM4uW61ZXVyPl eQpSnqfg7KkzMGhjgB4OPdHToSfsutmRfwdEIy06mXA4HLxOf43nCUl4npSMvJxcFLILUVRUhM+r JQtDTU2tIbmYW5qjS1dbdLHrAhaLRWP0BMFfZUUlQi+HIDwkHMVFxRLvLz8vH9ciInEtIhJMFSac nPtj/MTxaNO2jcT7JuRfi0sm7AI2Yu5F458nT5HyPBnlZeW091FRUYGK7ArkZOfgRcoLRITWVWI2 MTVBV7uu6NOvL+y62UFJicxvIOhXW1uLqMgbuHD+AtgFbJnEUF1VjdtRtxB99z5ch/8fvhn3DbR1 tGUSCyEfWkQyKSsrQ2x0LO7dvoekhERwOBzBJ0nA2zdv8fbNW0RGRILFYsHRuR+cB/RHZxtrMBgM mcREtCwP7j/AOf+zeP/2vaxDAVD3Kizsciiirt2A1+iR8BjpAVU18vrrS6TQyeT9u/cIDrqMOzfv oLq6WtbhNFJYWIirYVdwNewK2rZrC49Rnvh66NfkPTMhktQXL+Hn64fUl6myDqVZ5WXlCDhzHlfD r2DchPEY5jZM1iERUqaQyeR1+mtcuvA3HkQ/EGvsQ1pyc3Jx8ugJXDj3F9w9hsNthBu0tLVkHRah IG5E3sDxw76ora0V6XxlZWW0bdsWhoaGTb6YTCZycnKQnZ2N7OzsRv8tyiwwdgEbvoeOISkhEfMW zYeKiopIMROKR6GSSU52DvyO++Fx3CNZhyKS4qJi/HU2AJeDLsFrtBdGjRkNpgpT1mERcorL5eLU yVMIuxwq9Ll6enpwd3eHp6cn3NzchJ4cUl1djXv37iEkJAShoaFITRXuiSj6bjRy3udg2ZrlpHjs F4IBoOHWfubcmRjm7irDcJpXXV2Ny4GX8ffFIFRXydfrLHG0M2yHabOmo6dDT1mHQsiZ8rJy7Nu9 D08exVM+x8jICN9//z08PT3h5OQEZWVlwSdR9PLlS4SGhiIgIABxcXGUz2vdujWWrVkOy86WtMVC yIdrEZHwPezb8Hu5TyZPnzzFiSPHkf0+W9ahSIxDHwdMmzWdTLEkANS9Ft2xeTveZL2h1F5HRwfL ly/HkiVLpLJq/fLly1i1ahWSk5MptWeqMDF34Tw4D3SWcGSENH2eTJQBbKj/Ta/evWBhZSGDsJri crm4eP4ijh44gpLiEon3x2AwoK+vD3Nzc1haWkJNTQ2VlZVSGdh/9/Ydbl2/CUMjI7Tv0F7i/RHy K/VlKjau2YC83DyBbZlMJubPn4/AwEC4ubmByZTOK1MbGxvMmTMHpqamiI+PR3Ex/zUunFoOYmNi weFwYdfNTioxEpKX/ioN8Z88OcvlmElVVRUO7T+I6LvRtF5XX18fbm5usLa25jkY+bmSkpKGAcn3 7983/PfDhw9x+/ZtVFVV0RJbWVkZ9uzwwf+NcMOU6VOk9oOBkB95uXnYsXk7pQWIHh4e2LdvHyws ZHPzp6ysjB9//BGTJk3C3r17sWHDBoE3XoEBF6Gry8L/jXCTUpSENMldMikoKMDOLTuRlvqKlut9 9dVX8PDwgIeHBxwdHYVeSKilpQVLS0tYWjZ951tSUoJr164hNDQU4eHhyM4W/1Xc1bArSH3xEkuW /4x2hu3Evh6hGCoqKrBzyw4UFRYJbLt69Wps2bJFLtYuqaurY/Xq1XBycsKYMWPw8eNHvu39jvvB uL0xvurejW87QvHI1ZjJ67R07NiyAx8/8P+G5EdFRQVDhgxpSCAdOkinOB2Xy8Xjx48RGhqK0NBQ PH78WKzraWlrYdW6VbCy7kxThIS84nK52L1tNx4+4D+wraKiAl9fX0yZMkWs/tLT03Hy5Ek8evQI ZWVl6N27N8aPH4++ffuKdd1Xr17Bw8MDL1684NtOU1MT3ru3wcjESKz+CNmS2wH42OgHOLD3ACor K0U6n8FgYNKkSdiyZQvMzMxojk54d+7cwcqVKxETEyPyNVRVVbF01S+w72lPY2SEvDnvfw5BfwXx bWNgYICgoCC4uLiI1Zevry+WLFmC0tLSRp8rKSlh6dKl2L59u1hlgNhsNsaNG4fr16/zbWdkYgTv XdugqaUpcl+EbMnlAHxgQCCOHzmOmpoakc4fNmwYLly4gHnz5kFXV5fm6ERjZmaGGTNmwN7eHs+e PUN+fr7Q16itrUX03Wi0M2wHs46yT5AE/e7fvQ8/3z/4trGyssKtW7dgby/eTcW1a9fw7bffNjvO x+VyER0dDV1dXfTr10/kPtTU1DBx4kTk5OTwfTovKS5B+qt0OA90JjXsFNTnA/Ay/b/I5XJxYO/v CDhzXqSV7N27d8fVq1cRGRmJHj16SCBC8Y0aNQoJCQk4fvw42rcXfqZWbW0tDuz9HVfDrkggOkKW Xqel4/D+Q3zb6OnpITw8XOyBdi6XixkzZgj8d7ZmzRrk5QmeScZPq1atcOTIEYwePZpvu4Snz3D6 5Cmx+iLkh0yTyV9nA3Dn5h2hz2vfvj1OnTqF+Ph4uLrK17qY5igrK2PGjBlITU3Fzp07oaOjI9T5 XC4XJ4+dxL3b9yQUISELx4+c4DsbsFWrVrh48WKzkz+ElZqaijdvBK9bKS8vF+vVbD0GgwF/f3+B N3kRoRH4982/YvdHyJ7Mkkn03WgEBgQKfZ6TkxPi4+MxefJkhXs8VlNTw7JlyxAbGyv0nSaXy8XB fQfw7J9nEoqOkKa4mDikvnjJt82BAwfw9ddf09JfYmKiRNryo6GhgZCQEBgZ8R5o53K5OPvnGVr6 I2RLJj+NX6el49D+g0KfN2HCBERFRaFNG8VeKW5jY4O4uDgMGjRIqPNqa2ux23sX0l6lSSYwQio4 HA7OnuL/A3ThwoWYPXs2bX2am5tLpK0gJiYmCA4Ohrq6Os82j+Ie4UUK/xlghPyTejIpZBdi59ad Qi/2W79+Pc6ePdtiSrjr6ekhMjISs2bNEuq8iooKbNvoTWmFNCGfoq5F4d3bdzyPDx06FHv37qW1 Tzs7O2hrC968isFgwNHRkda+HRwccPz4cb5tzvj509onIX1STSbV1dXY5b0TH/I/UD5HVVUV/v7+ 2LBhg+QCkxEmk4mjR49i3759QhXlKyoswr6de0UuSU7ITmVlJS6c/YvncSaTicOHD9NapBGoG3/x 8fER2G7hwoXo2LEjrX0DwMSJEzFgwACex1Oep+DxQ/HWZhGyJdVk4nvoGF6m8H9P/CkDAwPcuHED kyZNkmBUsrdo0SKEhoYKVSY89WUq/MndnMIJDw5DQUEBz+OzZ8+mZcC9OTNnzsTcuXN5Hh86dCi2 bdsmkb4BYNeuXXyPnzt1ViH2JyKaJ7VkEnopFLdu3KLcvl27dnjw4AH69+8vuaDkiJubG+7duyfU Opmwy6F4pKB7u3yJqqqqcDnwMs/j2traWLdunURjOHToEIKDgzFs2DC0adMG2tracHZ2xoEDBxAZ GSnRqsN9+vTB+PHjeR7PyszCk8dPJNY/IVlSSSZPnzyFv99pyu1VVVVx6dIlmRWxkxU7OzsEBAQI 9Yrj4L4DQr02JGQn8VkiysrKeB5fsWKFVCaXeHp6IjIyErm5uSgsLMTdu3cxf/58qdT68vb25lvE lLzqUlwSTyYVFRU48vthcDgcyuf4+vrSPgioKFxdXbFv3z7K7UtLSgWuoCbkA78dQo2NjbFkyRIp RlNH2sUiLSws+L5qE2YzMEK+SLxq8IVzF4S6c16xYgUmT54swYjk34IFC5CUlIQjR45Qah8bE4sn j5+gRy/5rAJA1OF3171w4UJaXzElJCRg//79uHHjhljjEPb29vjpp58wePBg2mKbN28efvvtt2aP 5efl403WG5h2MKWtP0I6JJpM3mS9QXhwGOX2Xl5e8Pb2lmBEiuP333/Hy5cvERUVRan9yaMnsOfA XrKnvJx6nZbOtxq2oNIjwqitrYW7uzvevn0r9rUyMzMRGhqKjIwMkcoBNcfa2hqWlpZ49ar5bSae PHpCkokCkuhrruOHj1OevvrVV1/hzJkzCreqXVLqS2lYWVlRap+TnYNLgX9LOCpCVI/ieD+VWFtb w9ramra+IiMjaUkk9Wpra3H6NPUxTypGjBjB81j8IzJuoogk9pM7LiYOyUnPKbVt06YNgoODoaWl JalwFFLr1q0REhJCeYZX8N/BArdQJWQjns8rrlGjRtHaV05ODq3Xk8Q1PTw8eB57kfyC70QFQj5J LJn8fYH//gyfOnbsmEQWSrUE1tbW2LhxI6W2lRWVuBIaIeGICGEVFRYhPS2d5/GRI0dKMRr5MGDA AJ4r8mtra5GclCzliAhxSSSZPPvnGeX6US4uLrTfmbU0c+bMoZxsI0IjUFFRIdmACKHk5ebyHARv 166d2DscKiIVFRW+Fb8/kunuCkciyUSYpxJBq2KJun94mzZtotS2pLgE16/w3+WOkC52AZvnMQcH hy92nLBr1648j7HZvP/OCPlE+3dx6ouXSEpIotR23LhxX+RdmSgmTZqEr776ilLb0MshQq3rISSL XzIxNDSUYiTypW3btjyPsdmFUoyEoAPtyeRG5A1K7ZhMpkTrALU0SkpKlP++Pn74SDmhE5LH7y6b 314fLV27du14HuOXgAn5RGsyqa6uRmx0LKW2c+fO/eLKpYhrxIgRcHFxodT2/h2yK6O8IE8mzeP3 ZFJIXnMpHFqTSfyjeJSWlgpsx2KxJF7QrqXavn07pXaxMbGoqamRcDQEFSSZNI/vay7yZKJwaF0B f+/WXUrtlixZAn19fTq7BgA8f/4cmZmZyMvLw4cPH6CtrQ0TExOYmJjA2NgYBgYGtPcJANnZ2UhK SkJ+fj7y8/PB4XBgbGzc0K+RkRHf4nbCcHJyQv/+/XH//n2+7UpLSvE0/h/06uNAS7+E6Pj9YCSv uZpXSMZMFA5tyaSiogLxFIu08StDLax79+7B398f4eHhePPmDd+2xsbGmDx5MqZOnQobGxux+s3M zMSJEycQFhaGJ0+e8K1/pKKiAi8vL0ydOhVubm5ib3zk6ekpMJkAQNyDOJJM5EBFZSXPY5qamlKM RL7w+7NXVVWBy+VKvRAlITraXnO9eJ6C6upqge0sLS3RpUsXsfv7559/MHz4cLi4uODo0aMCEwkA vHv3Djt27ECXLl3g6OiIGzeoTRb4VF5eHhYvXgxra2ts3rwZ8fHxAgvpVVVV4eLFi/Dw8ICpqSm8 vb3F2iWRXymKTz1PpFaBgJAsFkuH57Hc3FwpRiJf8vJ4bz2tpaVFEomCoS2ZJCVSmz3k5eUldl+7 du1Cr169EBEh+mrv2NhYuLq6YtOmTZSn0d69exe2trbYv38/KvncbfLz/v17rFmzBsOGDRO5RIWd nR3MzMwEtsvJzuG7qx8hHSw+5XCys7OlGIl84ZdIdXR5J2BCPtGWTKjeBYuTTCorK/HDDz9g+fLl tKyj4HA4WL9+Pdzd3fHxI++KrgDg5+eHoUOHIj8/X+x+AeDmzZuwt7fH3bvUxpk+R/XpJIWUpZA5 3da8k8n79++lGIl84XczJcyOo4R8oCWZVFZUIi1VcPkUPT09ODs7i9zP9OnTcerUKZHP5yUyMhKT Jk3i+brq4sWLmDZtGqqqqmjtNzs7G56ensjIyBD6XMqvukgykTl+yYQ8mTRPh8WSYiQEHWhJJulp aZTGAEaMGCHy4PPOnTtx9uxZkc6l4sqVK9i7d2+TzxMTEzF16lSJ9VtYWIiJEycKPY138ODBUFdX F9guI+21qKERNOF3l02SSfN0dUkyUTS0zOb6kM//FVE9UV9xPXz4EKtWraLUlsFgoFOnTujevTu6 deuGyspKJCcnIywsTOAP7FWrVmHgwIHo1asXgLrqpePGjaO0dgaoK6Vf3y+LxUJaWhpCQkIEjlvE xMRg/fr12Lp1K6V+AEBNTQ1DhgxBaGgo33akxpHs8XsyyczMpL0/W1tbLFq0qNFnhw8fFurJetq0 adDR+W/cYuDAgbTFV4/fKz7yZKJ4aEkmVFerDh06VKTrb968mdIYSdu2bXHhwgUMGDCgybH09HTM nj0b16/zLoLo5OTU6FVXQEAAUlJSBPbLZDKxd+9ezJ8/v8kxNpuNNWvW4NChQzzPNzU1pTSg3ly8 gpIJma8ve/ySSVxcHNhsNq1jBH369EGfPn0afebn5ydUMlm3bp3Et4XgN17IIk8mCoeW11xUVqtq amqK9A/m6dOnCAkJEdiuW7duePz4cbOJBADMzc0REhLSbNnrfv364fr167h58yYcHOrWZXC5XEpb COvr6+PWrVvNJhKg7hXHwYMHsXz58ibH2rdvj0OHDuHVq1eYNWuWwL4+R2X1dEVFhcgzzwh6GBkb 8XwlWVNTg/DwcClHJHs5OTl49OgRz+OmHejZIpiQHnqSCYUnE1FX+h4/fpxSOx8fH4F7VKupqeHM mTNo3bo1AKBXr14ICwtDdHQ0hgwZ0qhtTEwMkpIET3f++eef4eTkJLDdtm3bGhJV+/btcfDgQaSl pWHu3LlQUVEReH5z+K0g/lRRYZFI1yfo0apVK3Tv2Z3n8eDgYClGIx/Cw8N5TnjR0taClXVnKUdE iIuW11xUnkxErUHE77VUPTs7O8qv0AwMDHDkyBEwmUyMHj2aZ7ubN28KvJaGhgbmzJlDqV8lJSUc OHAAjx49wo8//ghVVVVK5/FDNZmw2Wy0adtG7P4I0fXq7YAH9x80eywiIgLV1dW0ldxRBGFhYTyP de9h/8Xu8aLIpJZMRHkyefv2LaUxi3nz5gl1XSrlXKKiogS2+f7776Gnp0e53759+9K6fwvVZELG TWSvZ++eUFJSanbsr6ioCLdu3cKwYcNkEJn0VVdXIzIykufxng49pBgNQRepjZmI8mQSG0utnL29 vb3Q1xbk4cOHAtv06CHbb3p+VVc/RZKJ7Glra6OzDe9XN/7+/lKMRrauX7+O4uLiZo8xGAzY9yTJ RBGJnUw4HA6KigS/kxflyYRq3SITExOhr81PVVUVz2/2T3Xo0IHWfoWloqLSMP7DD0km8sGhT2+e x/z9/ZGYmCjFaGRnw4YNPI9ZdraCto629IIhaCN2MikqLBJY6BAQ7cmEXyG4ekpKSrSX8RZUWqWe qakprf2KgsqrLrLRkHzo1acXz2McDgcrVqyQYjSycfHiRcTFxfE83tOhpxSjIegkdjKh+oNKlGTy 4cMHgW0MDAxoH7ikWhxR0OwxaaCUTArJk4k8MGlvAhtb3lsfhIeHU5r4oahqamqwevVqnseVlJTg 5Cx4ZiQhn8ROJkyK01pFqWtFZcpsWVmZ0Nelo18AKCkpob1vYVH5e2UyRZt6TNBv8rTJfI8vW7aM 0pO+IvL19UVqairP4wMHD4KRyZe7WZiiEzuZ8Fvd+ylRahBR2RmxpKSE9jtvKuMQACjtoSJpVMaV dPjsp0FIl5V1Z/R1cuR5/PHjxzhz5owUI5KOkpISbNy4kedxpgoT4yfSt2keIX1iJxMNDQ0wVQS/ ZhJl7w6q2+y+fftW6Gvzo6urS2ljnqysLFr7FQWVZMIidY7kysQpE/kWPJ03b16LGozncDiYMmUK 358BbsPdoG9A/1behPTQMjWYSpkUUZ5MqM7SovsJQUlJidJYhKyTSXl5OaVZZyyy0ZBcMTI2wtD/ 473Itri4GJ6enpQmoCiClStX4u+//+Z5XENDA6PG8V5ATCgGuU4mjo6OlFbCBgUFCX3tmJgYvsUj XVxcBF7j4sWLQvf75MkT2sZ5qE6dJhVY5c/YCeOgpqbG83hGRgZGjx5N+x460ubr64tdu3bxbeP1 zUhoa5PpwIqOnmRCYdxElGTCYrHQvTvvmkb1Tp8+TXk6LwA8e/YMLi4u6NatG8+6SF9//bXA6zx8 +FConRJLS0sxfPhwmJub47fffhO7ACPVZEJec8kfFouFUWP5343fv38fM2fOlFJE9Lt+/brA6hSt W7fGCC9qG70R8k1qyUTU/c4/L8DYnPLychw8eJDS9aqqqjB//nzU1tYiKSkJI0eOhJOTE+7cudOo HdXSFjt27KDUDgA2btyI7Oxs5OTkYNGiRbCyssLx48eF3hirHuVkQsp5y6XR40ajh4B1FadOncKW LVukFBF94uPjMXbsWL7f20wmEz+v/BmqauLXqSNkT66fTABg/vz5aNVKcAmx9evXY9OmTXynVZaX l8PLywv37t1r9HlMTAwGDhyI4cOH4+nTpwAAS0tLuLu7C+w3LCwMY8eOFThNePPmzU0e99+8eYOZ M2eiS5cuOHPmjNBTQqm/5iJjJvKIwWBg8bLFMDXjX0nh119/xYIFC0S+6ZC2wMBAuLi4CJxlOWv+ bFh34b3uhlAsUhszKSsrE2nWVceOHTFp0iSB7bhcLtavXw8vLy8EBgbi9eu67Wo5HA4yMzPh4+MD KysrXL16lec1IiIiGtUDo7q7Y2BgIPr06YM//vgDT58+RXV1NYC6RZeXLl1Cv379sG7dOp7nv3r1 Cn5+fpT6+hSViQfqGupfVDVaRaOuro6Vv64UmPAPHjyI4cOHy/3OmVu2bMG4ceMEjguOHjsaAwfT v3sjITu0VA1mUdz0KjQ0FLNnzxb6+r/++isCAwMpLRIMDQ1t2H2QxWKhsrISFRUVlPr55ptvGm1S 5eLiAnd3d0RERAg8Nzk5GdOnTwdQt+hRU1OT8kr6tm3b4vTp05SmI3+KSnl+Ml4i/9q0bYNlq5dh 09pNDTcizbl27RocHR0REhICKysrofrYtm2bUGN0wlTDBuo2YZs+fTrOnTsnsG2ffn3w3eQJQl2f kH+0JBNDY2qlUi5fvixSMrGwsICfnx/Gjh0r1HnCLGZs3749fH19m3x++vRpODg4ICMjg/K1qqqq KM/CYTAY8PPzE7rcTEFBAaKjowW206e4VoeQLesuNpg1fzYO7jvAt92LFy/Qt29fBAQECFWyfu7c ueKGyFNWVhbGjRvHt+ZWvU7mnbBwyU9C3zgR8o+W11ymHUwpTe2LiooSuQTJmDFjKL92Epa2tjbO nTvX7N2Yvr4+goKCoKmpKZG+161bR2ls5nNXr15FbW2twHbWXciOdYpi4OCBGPPtGIHtCgoK4Orq ijFjxuDly5dSiKx5bDYbK1asgLW1NaVE0qZtGyxfu4IMuLdQtCQTBoOBLnZdBLarrKzkO2YhiLe3 N3bv3k3rLmyWlpZ48OABnJ2debbp0aMH7t27R2uVYFVVVfzxxx98y3Hzw2+nuk91sRX8/4WQH99O +g7TZk2nvL6qa9eumDt3rsgTXERRWVkJHx8fWFhYYOfOnZReI9vY2mCbz3ayyr0Fo+2nsq1dV0rt xN3veunSpQgNDRV5G+BPubq6Ii4uDra2tgLb2tvbIy4uDoMGDRK7X0NDQ9y8eRNTp04V6XwOh4Mr V64IbKekpITOXaxF6oOQHXcPd6xatwoaGhoC29bU1ODIkSOwtLTE+vXrJZpUSkpK8Mcff6Bz5874 5ZdfKK/t+nroYKzbsp7MKmzhaEsmXe0E/0AG6u6oqbye4cfd3R3p6enw8fGhvNtgPQaDgaFDhyIw MBDh4eGUizoC/yWByMhIODryLtbHi7m5OXbs2IHExET069dP6PPrxcbGIj8/X2C7TuadoK6uLnI/ hOx072mPrbu80c6Q2tbMpaWl2LRpE4yNjdG3b19s3boVCQkJYsfx/v17HD16FMOHD4eBgQGmT59O uYyQkpISfpjxA+b+NJfS9H5CsTEANCxumDl3Joa5u4p0IS6Xi3kz5uJDvuA9SG7fvo0BAwaI1M/n Kisrcf/+fVy7dg03btxARkYGPn782JCwtLS0YGpqig4dOsDe3h4zZswQeiYML8+fP8f169dx7do1 PH36FHl5eQ2P/K1atYKJiQk6dOgAc3NzTJgwAa6urrQMPK5duxZbt24V2G7kmFGY9IPgadWE/Cou LsZu791ITnou0vkdO3aEh4cHunbtCiMjIxgaGjZ8qarWjV3U1tYiLy8P2dnZDV8ZGRmIiIjAw4cP RSqJr6GhgcXLl8C+J/1bahPy4VpEJHwP/zdpibZkAgD+fqcRHCT4NdbEiRMlWmabw+Hg48ePUFZW FurJgw7FxcUoLS1F27ZtaR3bqcfhcNC1a1ekpKQIbLtj7w50sjCnPQZCumpqanDi6AncuCp4Krgw dHV1oaKigvz8fL516oRl2sEUP69cCpP29G6nTciXz5MJrT/tXAZRe9o4x7guwAAAEJ1JREFUd+4c 4uPj6ey6ESUlJRgYGEg9kQB1M8MMDQ0lkkiAuvIaVBKJkYkRSSQtRKtWrTB7/mx4796GLl2pvU6m gs1mIzc3l7ZEoqevhzkL52LXb7tJIvkC0foTz6yjmcDSEEDdK7Hly5fT2fUXoaKigu9K+k/1d+kv 4WgIabPsbImN2zZixa8r0d5U9ltG19PU1MSkHybht6O/Y/CwwRK7kSLkG+3/1wcMEly6HQBu3LhB aUYS8Z/ffvuN8t4t/V14T3UmFFuv3r2w+3cfzFk4F631pP/0XY+pwoTXN1444HsQI8eMorzdNdEy 0T7FYrDrEAQGBFKae758+XK4urqSOxkKPn78iG3btlFqa2NrAxNT8pqhJVNSUsLgYYPRf0B/3I66 jYexD5H0LFHixSAZDAYsrSzRq48DBg4eSNaNEA1oTyba2toY5u6KkL8FD8QnJCTgzz//xLRp0+gO o8XZunUr5SJ/owXsk0G0HKqqqnB1d4WruyvKy8vx7MlTPIp7hPhH8SguErwLJ9U+utl3Q68+DujV uxfZ0oBolkQmf3uO8sSVsAhUV/EuWldv3bp1+O6778h6CD4yMzMp79di1qmjwD0yiJZJXV0dfZ0c 0dfJEVwuFy+SXyDhaQI+fvgAdgG77otd9+vna72UlZWhw9KBrq4udFvrgqXLQuvWrWFjawO7bl+B qUIqTxP8SSSZ6LbWxeBhQ3A1TPCYyL///ouNGzdi+/btkgilRfjll18oV3wdNXaUhKMhFAGDwYCN rQ1sbJvuF8LlclFSUgJ2ARvgcsHS1YW2jjYpvkiIRWKDFaPGjGpYFCXIjh07cPbsWUmFotC8vb0p 7zVvZGKEfv1FX1lPfBkYDAa0tbVh2sEUpmYdoMPSIYmEEJvEkom+gT7Gfke9ZPz06dMRExMjqXAU 0sWLF7F27VrK7afNpFYgkCAIgm4S/cnjMcqT8nz4yspKjBo1CpmZmZIMSWE8fPgQU6ZMoVzKordj H1K6giAImZFoMlFWVsaPc2dSbp+bmwtPT08UF9MzC0VRZWVlwcvLC+Xl5ZTaq6ioYOqPUyUbFEEQ BB8Sfydia2eLQUMGUW6fkJCAiRMn0lorSJEUFxfD09NTqFLio8d9gzZt20gwKoIgCP6k8oJ9xpwf 0cm8E+X2oaGhWLZsmQQjkk+1tbWYMGECnj17RvkcaxtrMoOLIAiZk0oyUVVVxfK1K4QqvLhnzx4s Xbr0i3lCKSwshIeHB+UdFIG6BaKLly+BsrKyBCMjCIIQTGpTf/QN9LFszXKhFj/t2bMHXl5eLX4M 5dWrV3B0dBSqVhmDwcCCJQtIOQuCIOSCVOeRWna2xLxF84U6JywsDE5OTsjIyJBMUDIWFRWFvn37 Uior/6mRY0aSle4EQciNRptjaWlriVTWZPaCOehm341y+4AzAQgMoLYQr16bNm0QFBQEZ+eWUw33 8OHD+Omnn4Quztevfz8sXr6E0kIzDoeDbRu98e7tO1HDJAiCaKK8vBwlxSUNv2+UTETVtl1b+BzY Q3nFO5fLxd6de/Dg/gOh+lFRUcGxY8fwww8/iBKm3KipqcGiRYtw6NAhoc/9qns3rFq/ivKe2qGX QnHq5J9C90MQBCEMZQAbxL1IaWkpqqur0L0HtUVzDAYDPXv3wtMn/6DgYwHlfmpra3Hp0iUUFxfD 2dlZIfdPSE9Px/jx4/HXX38Jfa6FlSVWb1hN+c+dk52DvTv2NCnqRxAEQTfaxkzCg8OR9iqNcntV VVUsX7MCevp6Qve1Z88eWFlZ4fjx4wrzg/LDhw9YvHgxunTpgqioKKHPN+1gitXrV0NNTY3yOccO HqVcIJIgCEIctCUTDoeDI78fEeqHu56+Hrbs3AqzTh2F7u/9+/eYOXMmunfvLtR0WmkrLy/H9u3b YWFhgf3796Oqqkroa/Rw6IktO7dCW0eb8jk3r99EwtMEofsiCIIQBS2vueoVstlQVVVttuw1Lxqa Ghj49UD8m/VGpEHivLw8nD17Fnfu3IGdnR2MjY2FvoYkcDgc/Pnnn/jmm2/w999/i/yE4DnaC/MW zRNqSjW7gI2dW3dQ2k+GIAiCDrQmEwBISU5Bv/79hLqLbtWqFZxcnFBTU42U58JNka2XkZEBX19f vHz5Eu3atYOJiYlMKugWFBQgKCgIkydPxrFjx1BUVCTSdZhMJub+NA9e33gJXR784L4DeJ3+WqR+ CYIgREHLbK7PGZsYY+sub2hqaQp97p2bd3D0wBFUV4t3V62vr4/hw4fDw8MDbm5u0NHREet6/KSl pSE4OBghISG4e/eu2Ptw67bWxbLVy2Bl3Vnocy9dvISzp86I1T9BEISwJJJMAMCumx3WbFwrUqmP FykvsHvrLhQWFtISC5PJxIABA+Dp6QkPDw9YWFiIdb3a2lrExsYiODgYwcHBSE5OpiVOADC3NBd5 YkJsTCz2bPehXLaeIAiCLhJLJgAwxHUIZi+YI9K5ebl52LllBzIz6N/fRE1NDYaGhjA0NISRkVGT X3V0dJCbm4vs7Gy8f/++ya95eXkSmUXW36U/5i6aJ9KU59dp6Vi3ch2ZvUUQhExINJkAwPdTJ8Pr Gy+Rzq2oqMDh3w4j5l40zVHJF6YKE99O/E7kv6eCjwVY+fMKodbsEIpLQ0OD0g1H/V7vgm58dHV1 m3xWVlZGaeahsrIytLWbjo8WFxcrzLR9gh4STyYMBgO/rPoFvR37iHyN+EfxOHn0BHJzcmmMTD70 dOiJabOmo51hO5HOr6ysxLqV6/A6LZ3myAh55efnR7kKBIfDQW5uLt69e4dLly7hxIkTePeu8azJ q1evwtXVtdFnUVFRGDJkiMDr7969G0uXLm30WUZGBmxtbSlv7ka0DBJPJgCgqqaKDVs3wMLKUuRr VFVVIeivQAQHBYs9wC0P2rRtg6kzp6F3394iX6O2thZ7d+5BXEwcjZER8k6YZPK5mpoaTJkyBefO nWv4rHPnzkhISGjytDN+/HhcuHCB57VsbGzw7NkzMJmNp62PHDkSwcHBIsVHKC6pzJ2trKjEprWb kJSQKPI1VFRU8N33E+Dz+x44D3SWybRfOrB0Wfh+6mTsObhXrERSVVWF3d67SCIhhNKqVSucPHkS vXv/97338uVL7N69u0lbHx8faGrynpG5f//+JokkLCyMJJIvFO3rTHipqalB9N1otDc1QXvT9iJf R1tHG32dHNF/gDMqKyrwJvONQsxe0jfQx3ffT8CCJQtha2dLuVBjc0pLSuG9fisSnpEV7l+iUaNG wd6+cR28hIQEpKSkIDMzs+Hrw4cP0NbWblKAtf57LyQkpOGzBw8eYPLkyWCxWA2fsVgsMBgM3Lhx o0kMI0eOxJo1axp9VlFRAU9PTxQUkLG7L5FUXnM16pDBwI9zZ2KY2zBarpeXm4eI0HDcu30P7AI2 LdekC4PBgI1tFwwaMggug1zESiD1PuR/gPeGrXiT9YaGCAlF1NxrLnd392Y3V1NXV8fWrVuxZMmS Rp8/efIEPXs23g9n9OjRCAoKavRZVVUV7OzskJqa2vCZqqoqnj9/DnNz80ZtN27ciA0bNojyRyJa AKknk3rfTvoWY74dS9v1OBwOEp8l4u6tO4iNjkVFRQVt1xaWWaeOcB7oDOcBzrTuhPj237fYun4L 8vPyabsmoXiESSb18vPzoa//3/cim81udhvtiIgIuLm5Nfls+PDhDb9fu3YtNm/e3KhNeno6unbt KtN/d4RsiX+rLKKAMwEoZBdi2qzpQpcLaY6SkhK62XdDN/tu+HHuTDxPSEJSYhKSEp7jdVq6RPeS 19PXg62dLWztuqLrV11hZGxEex+pL15i+6btLX4LY0IysrKyGiWT+/fvN9tu4cKFSExMbPRqzN3d HV5eXggODoapqSlWrVrV5LyffvqJJJIvnMySCQBcCbuCrMwszF+8AG3atqHtuqqqqujh0LNhW9vy 8nKkPE/B+3fvwS4oALuAXffFrvu1qLCIUrJRV1eHobERjIwNYWRsBGMTY3S2sRZ5Wi8VXC4XoZdC cN7/vNglZogvk4GBAWxsGhdfvXr1arNtX716hV27dmHt2rWNPt+3bx8iIyOxa9cuaGhoNDoWHBws 15W7CemQ2WuuT6lrqGP6rBkYOHigTPrncrkoKixqSDQVFRVQVVODWv2Xuho0NTWFKl5Jh7zcPBzc dwDPE59LtV9CvjX3mmvs2LFNBsoNDAzg5uaGGTNmNBqwj4+Ph5ubG/Ly8pq9vrq6OpKTk2FmZtbo 85CQEHh6ejb6rLy8HLa2tsjIyBDjT0S0BHKRTOr17dcXsxbMbnZF7ZfmdtQtnDx2EuVlZOEX0Zg4 60zOnz+P6dOnC1xQOHLkSFy6dEng9X799Vds2bJFpFiIlkWuFmvExsRi6YKf8eRRvKxDkZniomL4 bNuNg/sOkkRC0E5ZWRm2trYC212+fBnh4eF826SmpmLXrl10hUYoOLl6MvnU10MH49tJ34pUPVcR cblc3Ll5B2f+9Je7Kc6EfBHnyQSom/k4bdo0nDp1im87CwsLJCUlNVmnUs/NzY3n2Avx5ZHbZALU FUB0df8/jBo7qtFiqpaEy+UiNjoWAWfP4+2bt7IOh1AAzSWTFStWIC6ucTUEJpMJZ2dnjBgxAj17 9mw0a5LD4aB3796Ij+f/FmDjxo1Yt25dk8+DgoIwZswYMf4UREsj18mknqqaKoZ7joDXaC+RNtyS V/GP4hHgf57sikgIRZR1JkuWLMGePXsafXbx4kWMGzeOb1/q6urIyclpMo5pZmaGrKwsISMnWjKF SCb1NDU14THKEyNGjoCampqswxFZ4rNEnPc/h5cpL2UdCqGAREkmTCYTpaWljWppZWdnw8hI8Jqo 7OxstGvXePo7HWvDiJZFputMhFVaWoqAM+cR8ncwHPs7wmXQANja2SrEN3bBxwLcu30Xd2/fRUZ6 hqzDIb4w1dXVyM3NhYmJScNnhoaGUFFRobRvCUEIolDJpF5ZWRmirkUh6loU9A304TzAGS5fD0AH sw6yDq2R8rJyxMbE4u6tO0h8lqgQBSmJlklXVxfGxsaNPnvz5g1JJARtFDKZfOpD/gdcDrqMy0GX YdbRDC6DBsC+lz3am7aXSZn6wsJCvHj+Avfv3sfjuEfkHyshcywWC35+fk2e4GNiYmQUEdESKXwy +VRmRiYy/U7D3+80VNVUYW5hDgsrC1haWcHCyoL2sifl5eVIf5WOtNQ0vEpNRVpqGvJym19VTBCS tHTpUnz33XeNPlNWVoaRkRH69evXpAQKAERGRkorPOIL0KKSyacqKyqRnJSM5KTkhs+0tbVhYWWB tu3aQktbC5paWtDS0oSW1v/+W1sLmpqadYOVJaUoKS1BSXEJSktKUVpSgpKSEpSUlKKosBCv017j 7b9vyasrQi4MHTpUqPb+/v44ceKEhKIhvkQtNpk0p7i4GP/E/yPrMAhCZrhcLgICAjBjxgxZh0K0 MF9UMiGIL1F1dTWysrJw8+ZN+Pj4ICUlRdYhES2QQq0zIQgCMDIyolwRorS0FG/fvhVrPx9LS8sm u4SShER8jiQTgiAIQmxyVTWYIAiCUEwkmRAEQRBiI8mEIAiCEBtJJgRBEITYSDIhCIIgxKYE4L2s gyAIgiAU2ntl1CUTRwA6Mg6GIAiCUDxvASz7fxUFi+g9mezeAAAAAElFTkSuQmCC ------=_NextPart_01DC5369.B776F410 Content-Location: file:///C:/A4623221/file8785_arquivos/filelist.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml; charset="utf-8" ------=_NextPart_01DC5369.B776F410--